/* * The little filesystem * * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lfs.h" #include "lfs_util.h" /// Caching block device operations /// static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); while (size > 0) { if (pcache && block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(data, &pcache->buffer[off-pcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (block == rcache->block && off >= rcache->off && off < rcache->off + lfs->cfg->read_size) { // is already in rcache? lfs_size_t diff = lfs_min(size, lfs->cfg->read_size - (off-rcache->off)); memcpy(data, &rcache->buffer[off-rcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, block, off, data, diff); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // load to cache, first condition can no longer fail LFS_ASSERT(block < lfs->cfg->block_count); rcache->block = block; rcache->off = off - (off % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, rcache->block, rcache->off, rcache->buffer, lfs->cfg->read_size); if (err) { return err; } } return 0; } static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } if (c != data[i]) { return false; } } return true; } static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } lfs_crc(crc, &c, 1); } return 0; } static int lfs_cache_flush(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache) { if (pcache->block != 0xffffffff) { LFS_ASSERT(pcache->block < lfs->cfg->block_count); int err = lfs->cfg->prog(lfs->cfg, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } pcache->block = 0xffffffff; } return 0; } static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); LFS_ASSERT(off + size <= lfs->cfg->block_size); while (size > 0) { if (block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(&pcache->buffer[off-pcache->off], data, diff); data += diff; off += diff; size -= diff; if (off % lfs->cfg->prog_size == 0) { // eagerly flush out pcache if we fill up int err = lfs_cache_flush(lfs, pcache, rcache); if (err) { return err; } } continue; } // pcache must have been flushed, either by programming and // entire block or manually flushing the pcache LFS_ASSERT(pcache->block == 0xffffffff); if (off % lfs->cfg->prog_size == 0 && size >= lfs->cfg->prog_size) { // bypass pcache? LFS_ASSERT(block < lfs->cfg->block_count); lfs_size_t diff = size - (size % lfs->cfg->prog_size); int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, block, off, data, diff); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } data += diff; off += diff; size -= diff; continue; } // prepare pcache, first condition can no longer fail pcache->block = block; pcache->off = off - (off % lfs->cfg->prog_size); } return 0; } /// General lfs block device operations /// static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { return lfs_cache_read(lfs, &lfs->rcache, &lfs->pcache, block, off, buffer, size); } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_prog(lfs, &lfs->pcache, NULL, block, off, buffer, size); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size); } static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc); } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) { LFS_ASSERT(block < lfs->cfg->block_count); return lfs->cfg->erase(lfs->cfg, block); } static int lfs_bd_sync(lfs_t *lfs) { lfs->rcache.block = 0xffffffff; int err = lfs_cache_flush(lfs, &lfs->pcache, NULL); if (err) { return err; } return lfs->cfg->sync(lfs->cfg); } /// Internal operations predeclared here /// int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data); static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_mdir_t *pdir); static int32_t lfs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_mdir_t *parent); static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], lfs_block_t newpair[2]); int lfs_scan(lfs_t *lfs); int lfs_fixmove(lfs_t *lfs); int lfs_forceconsistency(lfs_t *lfs); /// Block allocator /// static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = (lfs_t*)p; lfs_block_t off = ((block - lfs->free.off) + lfs->cfg->block_count) % lfs->cfg->block_count; if (off < lfs->free.size) { lfs->free.buffer[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { while (true) { while (lfs->free.i != lfs->free.size) { lfs_block_t off = lfs->free.i; lfs->free.i += 1; lfs->free.ack -= 1; if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) { // found a free block *block = (lfs->free.off + off) % lfs->cfg->block_count; // eagerly find next off so an alloc ack can // discredit old lookahead blocks while (lfs->free.i != lfs->free.size && (lfs->free.buffer[lfs->free.i / 32] & (1U << (lfs->free.i % 32)))) { lfs->free.i += 1; lfs->free.ack -= 1; } return 0; } } // check if we have looked at all blocks since last ack if (lfs->free.ack == 0) { LFS_WARN("No more free space %d", lfs->free.i + lfs->free.off); return LFS_ERR_NOSPC; } lfs->free.off = (lfs->free.off + lfs->free.size) % lfs->cfg->block_count; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack); lfs->free.i = 0; // find mask of free blocks from tree memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } } } static void lfs_alloc_ack(lfs_t *lfs) { lfs->free.ack = lfs->cfg->block_count; } /// Metadata pair and directory operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pairisnull(const lfs_block_t pair[2]) { return pair[0] == 0xffffffff || pair[1] == 0xffffffff; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !(paira[0] == pairb[0] || paira[1] == pairb[1] || paira[0] == pairb[1] || paira[1] == pairb[0]); } static inline bool lfs_pairsync( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return (paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0]); } static inline void lfs_pairfromle32(lfs_block_t *pair) { pair[0] = lfs_fromle32(pair[0]); pair[1] = lfs_fromle32(pair[1]); } static inline void lfs_pairtole32(lfs_block_t *pair) { pair[0] = lfs_tole32(pair[0]); pair[1] = lfs_tole32(pair[1]); } static void lfs_ctzfromle32(struct lfs_ctz *ctz) { ctz->head = lfs_fromle32(ctz->head); ctz->size = lfs_fromle32(ctz->size); } static void lfs_ctztole32(struct lfs_ctz *ctz) { ctz->head = lfs_tole32(ctz->head); ctz->size = lfs_tole32(ctz->size); } /// Entry tag operations /// #define LFS_MKTAG(type, id, size) \ (((uint32_t)(type) << 22) | ((uint32_t)(id) << 12) | (uint32_t)(size)) #define LFS_MKATTR(type, id, buffer, size, next) \ &(const lfs_mattr_t){LFS_MKTAG(type, id, size), (buffer), (next)} static inline bool lfs_tagisvalid(uint32_t tag) { return !(tag & 0x80000000); } static inline bool lfs_tagisuser(uint32_t tag) { return (tag & 0x40000000); } static inline uint16_t lfs_tagtype(uint32_t tag) { return (tag & 0x7fc00000) >> 22; } static inline uint16_t lfs_tagsubtype(uint32_t tag) { return (tag & 0x7c000000) >> 22; } static inline uint16_t lfs_tagid(uint32_t tag) { return (tag & 0x003ff000) >> 12; } static inline lfs_size_t lfs_tagsize(uint32_t tag) { return tag & 0x00000fff; } // operations on set of globals static inline void lfs_globalxor(lfs_global_t *a, const lfs_global_t *b) { for (int i = 0; i < sizeof(lfs_global_t)/2; i++) { a->u16[i] ^= b->u16[i]; } } static inline bool lfs_globaliszero(const lfs_global_t *a) { for (int i = 0; i < sizeof(lfs_global_t)/2; i++) { if (a->u16[i] != 0) { return false; } } return true; } static inline void lfs_globalzero(lfs_global_t *a) { memset(a->u16, 0x00, sizeof(lfs_global_t)); } static inline void lfs_globalones(lfs_global_t *a) { memset(a->u16, 0xff, sizeof(lfs_global_t)); } static inline void lfs_globalxormove(lfs_global_t *a, const lfs_block_t pair[2], uint16_t id) { a->u16[0] ^= id; for (int i = 0; i < sizeof(lfs_block_t[2])/2; i++) { a->u16[1+i] ^= ((uint16_t*)pair)[i]; } } static inline void lfs_globalxordeorphaned(lfs_global_t *a, bool deorphaned) { a->u16[0] ^= deorphaned << 15; } static inline void lfs_globalfromle32(lfs_global_t *a) { a->u16[0] = lfs_fromle16(a->u16[0]); lfs_pairfromle32((lfs_block_t*)&a->u16[1]); } static inline void lfs_globaltole32(lfs_global_t *a) { a->u16[0] = lfs_tole16(a->u16[0]); lfs_pairtole32((lfs_block_t*)&a->u16[1]); } static inline const lfs_block_t *lfs_globalmovepair(const lfs_t *lfs) { return (const lfs_block_t*)&lfs->globals.u16[1]; } static inline uint16_t lfs_globalmoveid(const lfs_t *lfs) { return 0x3ff & lfs->globals.u16[0]; } static inline bool lfs_globalisdeorphaned(const lfs_t *lfs) { return 0x8000 & lfs->globals.u16[0]; } static inline void lfs_globalmove(lfs_t *lfs, const lfs_block_t pair[2], uint16_t id) { lfs_global_t diff; lfs_globalzero(&diff); lfs_globalxormove(&diff, lfs_globalmovepair(lfs), lfs_globalmoveid(lfs)); lfs_globalxormove(&diff, pair, id); lfs_globalfromle32(&lfs->locals); lfs_globalxor(&lfs->locals, &diff); lfs_globaltole32(&lfs->locals); lfs_globalxor(&lfs->globals, &diff); } static inline void lfs_globaldeorphaned(lfs_t *lfs, bool deorphaned) { deorphaned ^= lfs_globalisdeorphaned(lfs); lfs_globalfromle32(&lfs->locals); lfs_globalxordeorphaned(&lfs->locals, deorphaned); lfs_globaltole32(&lfs->locals); lfs_globalxordeorphaned(&lfs->globals, deorphaned); } // commit logic struct lfs_commit { lfs_block_t block; lfs_off_t off; uint32_t ptag; uint32_t crc; lfs_off_t begin; lfs_off_t end; }; struct lfs_diskoff { lfs_block_t block; lfs_off_t off; }; static int32_t lfs_commitget(lfs_t *lfs, lfs_block_t block, lfs_off_t off, uint32_t tag, uint32_t getmask, uint32_t gettag, int32_t getdiff, void *buffer, bool stopatcommit) { // iterate over dir block backwards (for faster lookups) while (off >= 2*sizeof(tag)+lfs_tagsize(tag)) { off -= sizeof(tag)+lfs_tagsize(tag); if (lfs_tagtype(tag) == LFS_TYPE_CRC && stopatcommit) { break; } else if (lfs_tagtype(tag) == LFS_TYPE_DELETE) { if (lfs_tagid(tag) <= lfs_tagid(gettag + getdiff)) { getdiff += LFS_MKTAG(0, 1, 0); } } else if ((tag & getmask) == ((gettag + getdiff) & getmask)) { if (buffer) { lfs_size_t diff = lfs_min( lfs_tagsize(gettag), lfs_tagsize(tag)); int err = lfs_bd_read(lfs, block, off+sizeof(tag), buffer, diff); if (err) { return err; } memset((uint8_t*)buffer + diff, 0, lfs_tagsize(gettag) - diff); } return tag - getdiff; } uint32_t ntag; int err = lfs_bd_read(lfs, block, off, &ntag, sizeof(ntag)); if (err) { return err; } tag ^= lfs_fromle32(ntag); } return LFS_ERR_NOENT; } static int lfs_commitattrs(lfs_t *lfs, struct lfs_commit *commit, uint16_t id, const struct lfs_attr *attrs); static int lfs_commitmove(lfs_t *lfs, struct lfs_commit *commit, uint16_t fromid, uint16_t toid, const lfs_mdir_t *dir, const lfs_mattr_t *attrs); static int lfs_commitattr(lfs_t *lfs, struct lfs_commit *commit, uint32_t tag, const void *buffer) { if (lfs_tagtype(tag) == LFS_FROM_ATTRS) { // special case for custom attributes return lfs_commitattrs(lfs, commit, lfs_tagid(tag), buffer); } else if (lfs_tagtype(tag) == LFS_FROM_MOVE) { // special case for moves return lfs_commitmove(lfs, commit, lfs_tagsize(tag), lfs_tagid(tag), buffer, NULL); } // check if we fit lfs_size_t size = lfs_tagsize(tag); if (commit->off + sizeof(tag)+size > commit->end) { return LFS_ERR_NOSPC; } // write out tag uint32_t ntag = lfs_tole32((tag & 0x7fffffff) ^ commit->ptag); lfs_crc(&commit->crc, &ntag, sizeof(ntag)); int err = lfs_bd_prog(lfs, commit->block, commit->off, &ntag, sizeof(ntag)); if (err) { return err; } commit->off += sizeof(ntag); if (!(tag & 0x80000000)) { // from memory lfs_crc(&commit->crc, buffer, size); err = lfs_bd_prog(lfs, commit->block, commit->off, buffer, size); if (err) { return err; } } else { // from disk const struct lfs_diskoff *disk = buffer; for (lfs_off_t i = 0; i < size; i++) { // rely on caching to make this efficient uint8_t dat; int err = lfs_bd_read(lfs, disk->block, disk->off+i, &dat, 1); if (err) { return err; } lfs_crc(&commit->crc, &dat, 1); err = lfs_bd_prog(lfs, commit->block, commit->off+i, &dat, 1); if (err) { return err; } } } commit->off += size; commit->ptag = tag & 0x7fffffff; return 0; } static int lfs_commitattrs(lfs_t *lfs, struct lfs_commit *commit, uint16_t id, const struct lfs_attr *attrs) { for (const struct lfs_attr *a = attrs; a; a = a->next) { int err = lfs_commitattr(lfs, commit, LFS_MKTAG(0x100 | a->type, id, a->size), a->buffer); if (err) { return err; } } return 0; } static int lfs_commitmove(lfs_t *lfs, struct lfs_commit *commit, uint16_t fromid, uint16_t toid, const lfs_mdir_t *dir, const lfs_mattr_t *attrs) { // iterate through list and commits, only committing unique entries lfs_off_t off = dir->off; uint32_t ntag = dir->etag; while (attrs || off > sizeof(uint32_t)) { struct lfs_diskoff disk; uint32_t tag; const void *buffer; if (attrs) { tag = attrs->tag; buffer = attrs->buffer; attrs = attrs->next; } else { LFS_ASSERT(off > sizeof(ntag)+lfs_tagsize(ntag)); off -= sizeof(ntag)+lfs_tagsize(ntag); tag = ntag; buffer = &disk; disk.block = dir->pair[0]; disk.off = off + sizeof(tag); int err = lfs_bd_read(lfs, dir->pair[0], off, &ntag, sizeof(ntag)); if (err) { return err; } ntag = lfs_fromle32(ntag); ntag ^= tag; tag |= 0x80000000; } if (lfs_tagtype(tag) == LFS_TYPE_DELETE && lfs_tagid(tag) <= fromid) { // something was deleted, we need to move around it fromid += 1; } else if (lfs_tagid(tag) != fromid) { // ignore non-matching ids } else { // check if type has already been committed int32_t res = lfs_commitget(lfs, commit->block, commit->off, commit->ptag, lfs_tagisuser(tag) ? 0x7ffff000 : 0x7c3ff000, LFS_MKTAG(lfs_tagtype(tag), toid, 0), 0, NULL, true); if (res < 0 && res != LFS_ERR_NOENT) { return res; } if (res == LFS_ERR_NOENT) { // update id and commit, as we are currently unique int err = lfs_commitattr(lfs, commit, (tag & 0xffc00fff) | LFS_MKTAG(0, toid, 0), buffer); if (err) { return err; } } } } return 0; } static int lfs_commitglobals(lfs_t *lfs, struct lfs_commit *commit, lfs_global_t *locals) { if (lfs_globaliszero(&lfs->locals)) { return 0; } lfs_globalxor(locals, &lfs->locals); int err = lfs_commitattr(lfs, commit, LFS_MKTAG(LFS_TYPE_GLOBALS, 0x3ff, sizeof(lfs_global_t)), locals); lfs_globalxor(locals, &lfs->locals); return err; } static int lfs_commitcrc(lfs_t *lfs, struct lfs_commit *commit) { // align to program units lfs_off_t off = lfs_alignup(commit->off + 2*sizeof(uint32_t), lfs->cfg->prog_size); // read erased state from next program unit uint32_t tag; int err = lfs_bd_read(lfs, commit->block, off, &tag, sizeof(tag)); if (err) { return err; } // build crc tag tag = lfs_fromle32(tag); tag = (0x80000000 & ~tag) | LFS_MKTAG(LFS_TYPE_CRC, 0x3ff, off - (commit->off+sizeof(uint32_t))); // write out crc uint32_t footer[2]; footer[0] = lfs_tole32(tag ^ commit->ptag); lfs_crc(&commit->crc, &footer[0], sizeof(footer[0])); footer[1] = lfs_tole32(commit->crc); err = lfs_bd_prog(lfs, commit->block, commit->off, footer, sizeof(footer)); if (err) { return err; } commit->off += sizeof(tag)+lfs_tagsize(tag); commit->ptag = tag; // flush buffers err = lfs_bd_sync(lfs); if (err) { return err; } // successful commit, check checksum to make sure uint32_t crc = 0xffffffff; err = lfs_bd_crc(lfs, commit->block, commit->begin, commit->off-lfs_tagsize(tag)-commit->begin, &crc); if (err) { return err; } if (crc != commit->crc) { return LFS_ERR_CORRUPT; } return 0; } // internal dir operations static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir, bool split, const lfs_block_t tail[2]) { // allocate pair of dir blocks (backwards, so we write to block 1 first) for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]); if (err) { return err; } } // rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->rev, 4); dir->rev = lfs_fromle32(dir->rev); if (err) { return err; } // set defaults dir->off = sizeof(dir->rev); dir->etag = 0; dir->count = 0; dir->tail[0] = tail[0]; dir->tail[1] = tail[1]; dir->erased = false; dir->split = split; lfs_globalzero(&dir->locals); // don't write out yet, let caller take care of that return 0; } static int lfs_dir_compact(lfs_t *lfs, lfs_mdir_t *dir, const lfs_mattr_t *attrs, lfs_mdir_t *source, uint16_t begin, uint16_t end) { // save some state in case block is bad const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]}; bool relocated = false; // There's nothing special about our global delta, so feed it back // into the global global delta lfs_globalxor(&lfs->locals, &dir->locals); lfs_globalzero(&dir->locals); // increment revision count dir->rev += 1; while (true) { // last complete id int16_t ack = -1; dir->count = end - begin; if (true) { // erase block to write to int err = lfs_bd_erase(lfs, dir->pair[1]); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // write out header uint32_t crc = 0xffffffff; uint32_t rev = lfs_tole32(dir->rev); lfs_crc(&crc, &rev, sizeof(rev)); err = lfs_bd_prog(lfs, dir->pair[1], 0, &rev, sizeof(rev)); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // setup compaction struct lfs_commit commit = { .block = dir->pair[1], .off = sizeof(dir->rev), .crc = crc, .ptag = 0, // space is complicated, we need room for tail, crc, globals, // and we cap at half a block to give room for metadata updates .begin = 0, .end = lfs_min( lfs_alignup(lfs->cfg->block_size/2, lfs->cfg->prog_size), lfs->cfg->block_size - 34), }; // commit with a move for (uint16_t id = begin; id < end; id++) { err = lfs_commitmove(lfs, &commit, id, id - begin, source, attrs); if (err) { if (err == LFS_ERR_NOSPC) { goto split; } else if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } ack = id; } // reopen reserved space at the end commit.end = lfs->cfg->block_size - 8; if (!relocated) { err = lfs_commitglobals(lfs, &commit, &dir->locals); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } if (!lfs_pairisnull(dir->tail)) { // commit tail, which may be new after last size check // TODO le32 lfs_pairtole32(dir->tail); err = lfs_commitattr(lfs, &commit, LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, sizeof(dir->tail)), dir->tail); lfs_pairfromle32(dir->tail); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } err = lfs_commitcrc(lfs, &commit); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // successful compaction, swap dir pair to indicate most recent lfs_pairswap(dir->pair); dir->off = commit.off; dir->etag = commit.ptag; dir->erased = true; } break; split: // commit no longer fits, need to split dir, // drop caches and create tail lfs->pcache.block = 0xffffffff; if (ack == -1) { // If we can't fit in this block, we won't fit in next block return LFS_ERR_NOSPC; } lfs_mdir_t tail; int err = lfs_dir_alloc(lfs, &tail, dir->split, dir->tail); if (err) { return err; } err = lfs_dir_compact(lfs, &tail, attrs, dir, ack+1, end); if (err) { return err; } end = ack+1; dir->tail[0] = tail.pair[0]; dir->tail[1] = tail.pair[1]; dir->split = true; continue; relocate: //commit was corrupted LFS_DEBUG("Bad block at %d", dir->pair[1]); // drop caches and prepare to relocate block relocated = true; lfs->pcache.block = 0xffffffff; // can't relocate superblock, filesystem is now frozen if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) { LFS_WARN("Superblock %d has become unwritable", oldpair[1]); return LFS_ERR_CORRUPT; } // relocate half of pair err = lfs_alloc(lfs, &dir->pair[1]); if (err) { return err; } continue; } if (!relocated) { // successful commit, update globals lfs_globalxor(&dir->locals, &lfs->locals); lfs_globalzero(&lfs->locals); } else { // update references if we relocated LFS_DEBUG("Relocating %d %d to %d %d", oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]); int err = lfs_relocate(lfs, oldpair, dir->pair); if (err) { return err; } } // update any dirs/files that are affected for (int i = 0; i < 2; i++) { for (lfs_file_t *f = ((lfs_file_t**)&lfs->files)[i]; f; f = f->next) { if (lfs_paircmp(f->pair, dir->pair) == 0 && f->id >= begin && f->id < end) { f->pair[0] = dir->pair[0]; f->pair[1] = dir->pair[1]; f->id -= begin; } } } return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir, const lfs_mattr_t *attrs) { lfs_mattr_t cancelattr; lfs_global_t canceldiff; lfs_globalzero(&canceldiff); if (lfs_paircmp(dir->pair, lfs_globalmovepair(lfs)) == 0) { // Wait, we have the move? Just cancel this out here // We need to, or else the move can become outdated lfs_globalxormove(&canceldiff, lfs_globalmovepair(lfs), lfs_globalmoveid(lfs)); lfs_globalxormove(&canceldiff, (lfs_block_t[2]){0xffffffff, 0xffffffff}, 0x3ff); lfs_globalfromle32(&lfs->locals); lfs_globalxor(&lfs->locals, &canceldiff); lfs_globaltole32(&lfs->locals); cancelattr.tag = LFS_MKTAG(LFS_TYPE_DELETE, lfs_globalmoveid(lfs), 0); cancelattr.next = attrs; attrs = &cancelattr; } // calculate new directory size uint32_t deletetag = 0xffffffff; for (const lfs_mattr_t *a = attrs; a; a = a->next) { if (lfs_tagid(a->tag) < 0x3ff && lfs_tagid(a->tag) >= dir->count) { dir->count = lfs_tagid(a->tag)+1; } if (lfs_tagtype(a->tag) == LFS_TYPE_DELETE) { LFS_ASSERT(dir->count > 0); dir->count -= 1; deletetag = a->tag; if (dir->count == 0) { // should we actually drop the directory block? lfs_mdir_t pdir; int err = lfs_pred(lfs, dir->pair, &pdir); if (err && err != LFS_ERR_NOENT) { return err; } if (err != LFS_ERR_NOENT && pdir.split) { // steal tail and global state pdir.split = dir->split; pdir.tail[0] = dir->tail[0]; pdir.tail[1] = dir->tail[1]; lfs_globalxor(&lfs->locals, &dir->locals); return lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_TAIL + pdir.split, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); } } } } if (!dir->erased) { compact: // fall back to compaction lfs->pcache.block = 0xffffffff; int err = lfs_dir_compact(lfs, dir, attrs, dir, 0, dir->count); if (err) { return err; } } else { // try to commit struct lfs_commit commit = { .block = dir->pair[0], .off = dir->off, .crc = 0xffffffff, .ptag = dir->etag, .begin = dir->off, .end = lfs->cfg->block_size - 8, }; for (const lfs_mattr_t *a = attrs; a; a = a->next) { if (lfs_tagtype(a->tag) != LFS_TYPE_DELETE) { lfs_pairtole32(dir->tail); int err = lfs_commitattr(lfs, &commit, a->tag, a->buffer); lfs_pairfromle32(dir->tail); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } } } if (lfs_tagisvalid(deletetag)) { // special case for deletes, since order matters int err = lfs_commitattr(lfs, &commit, deletetag, NULL); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } } int err = lfs_commitglobals(lfs, &commit, &dir->locals); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } err = lfs_commitcrc(lfs, &commit); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } // successful commit, update dir dir->off = commit.off; dir->etag = commit.ptag; // successful commit, update globals lfs_globalxor(&dir->locals, &lfs->locals); lfs_globalzero(&lfs->locals); } // update globals that are affected lfs_globalxor(&lfs->globals, &canceldiff); // update any directories that are affected for (lfs_dir_t *d = lfs->dirs; d; d = d->next) { if (lfs_paircmp(d->m.pair, dir->pair) == 0) { d->m = *dir; if (d->id > lfs_tagid(deletetag)) { d->pos -= 1; } } } for (int i = 0; i < 2; i++) { for (lfs_file_t *f = ((lfs_file_t**)&lfs->files)[i]; f; f = f->next) { if (f->id == lfs_tagid(deletetag)) { f->pair[0] = 0xffffffff; f->pair[1] = 0xffffffff; } else if (f->id > lfs_tagid(deletetag)) { f->id -= 1; } } } return 0; } static int32_t lfs_dir_find(lfs_t *lfs, lfs_mdir_t *dir, const lfs_block_t pair[2], uint32_t findmask, uint32_t findtag, const void *findbuffer) { dir->pair[0] = pair[0]; dir->pair[1] = pair[1]; int32_t foundtag = LFS_ERR_NOENT; // find the block with the most recent revision uint32_t rev[2]; for (int i = 0; i < 2; i++) { int err = lfs_bd_read(lfs, dir->pair[i], 0, &rev[i], sizeof(rev[i])); if (err) { return err; } rev[i] = lfs_fromle32(rev[i]); } if (lfs_scmp(rev[1], rev[0]) > 0) { lfs_pairswap(dir->pair); lfs_pairswap(rev); } // load blocks and check crc for (int i = 0; i < 2; i++) { lfs_off_t off = sizeof(dir->rev); uint32_t ptag = 0; uint32_t crc = 0xffffffff; dir->rev = lfs_tole32(rev[0]); lfs_crc(&crc, &dir->rev, sizeof(dir->rev)); dir->rev = lfs_fromle32(dir->rev); dir->off = 0; uint32_t tempfoundtag = foundtag; uint16_t tempcount = 0; lfs_block_t temptail[2] = {0xffffffff, 0xffffffff}; bool tempsplit = false; lfs_global_t templocals; lfs_globalzero(&templocals); while (true) { // extract next tag uint32_t tag; int err = lfs_bd_read(lfs, dir->pair[0], off, &tag, sizeof(tag)); if (err) { return err; } lfs_crc(&crc, &tag, sizeof(tag)); tag = lfs_fromle32(tag) ^ ptag; // next commit not yet programmed if (lfs_tagtype(ptag) == LFS_TYPE_CRC && !lfs_tagisvalid(tag)) { dir->erased = true; break; } // check we're in valid range if (off + sizeof(tag)+lfs_tagsize(tag) > lfs->cfg->block_size) { dir->erased = false; break; } if (lfs_tagtype(tag) == LFS_TYPE_CRC) { // check the crc attr uint32_t dcrc; int err = lfs_bd_read(lfs, dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc)); if (err) { return err; } dcrc = lfs_fromle32(dcrc); if (crc != dcrc) { dir->erased = false; break; } foundtag = tempfoundtag; dir->off = off + sizeof(tag)+lfs_tagsize(tag); dir->etag = tag; dir->count = tempcount; dir->tail[0] = temptail[0]; dir->tail[1] = temptail[1]; dir->split = tempsplit; dir->locals = templocals; crc = 0xffffffff; } else { err = lfs_bd_crc(lfs, dir->pair[0], off+sizeof(tag), lfs_tagsize(tag), &crc); if (err) { return err; } if (lfs_tagid(tag) < 0x3ff && lfs_tagid(tag) >= tempcount) { tempcount = lfs_tagid(tag)+1; } // TODO use subtype accross all of these? if (lfs_tagsubtype(tag) == LFS_TYPE_TAIL) { tempsplit = (lfs_tagtype(tag) & 1); err = lfs_bd_read(lfs, dir->pair[0], off+sizeof(tag), temptail, sizeof(temptail)); if (err) { return err; } lfs_pairfromle32(temptail); } else if (lfs_tagtype(tag) == LFS_TYPE_GLOBALS) { err = lfs_bd_read(lfs, dir->pair[0], off+sizeof(tag), &templocals, sizeof(templocals)); if (err) { return err; } } else if (lfs_tagtype(tag) == LFS_TYPE_DELETE) { LFS_ASSERT(tempcount > 0); tempcount -= 1; if (lfs_tagid(tag) == lfs_tagid(tempfoundtag)) { tempfoundtag = LFS_ERR_NOENT; } else if (lfs_tagisvalid(tempfoundtag) && lfs_tagid(tag) < lfs_tagid(tempfoundtag)) { tempfoundtag -= LFS_MKTAG(0, 1, 0); } } else if ((tag & findmask) == (findtag & findmask)) { int res = lfs_bd_cmp(lfs, dir->pair[0], off+sizeof(tag), findbuffer, lfs_tagsize(tag)); if (res < 0) { return res; } if (res) { // found a match tempfoundtag = tag; } } } ptag = tag; off += sizeof(tag)+lfs_tagsize(tag); } // consider what we have good enough if (dir->off > 0) { // synthetic move if (lfs_paircmp(dir->pair, lfs_globalmovepair(lfs)) == 0) { if (lfs_globalmoveid(lfs) == lfs_tagid(foundtag)) { foundtag = LFS_ERR_NOENT; } else if (lfs_tagisvalid(foundtag) && lfs_globalmoveid(lfs) < lfs_tagid(foundtag)) { foundtag -= LFS_MKTAG(0, 1, 0); } } return foundtag; } // failed, try the other crc? lfs_pairswap(dir->pair); lfs_pairswap(rev); } LFS_ERROR("Corrupted dir pair at %d %d", dir->pair[0], dir->pair[1]); return LFS_ERR_CORRUPT; } static int lfs_dir_fetch(lfs_t *lfs, lfs_mdir_t *dir, const lfs_block_t pair[2]) { int32_t res = lfs_dir_find(lfs, dir, pair, 0xffffffff, 0xffffffff, NULL); if (res < 0 && res != LFS_ERR_NOENT) { return res; } return 0; } static int32_t lfs_dir_get(lfs_t *lfs, lfs_mdir_t *dir, uint32_t getmask, uint32_t gettag, void *buffer) { int32_t getdiff = 0; if (lfs_paircmp(dir->pair, lfs_globalmovepair(lfs)) == 0 && lfs_tagid(gettag) <= lfs_globalmoveid(lfs)) { // synthetic moves getdiff = LFS_MKTAG(0, 1, 0); } return lfs_commitget(lfs, dir->pair[0], dir->off, dir->etag, getmask, gettag, getdiff, buffer, false); } static int32_t lfs_dir_lookup(lfs_t *lfs, lfs_mdir_t *dir, const char **path) { // we reduce path to a single name if we can find it const char *name = *path; *path = NULL; // default to root dir int32_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0); lfs_block_t pair[2] = {lfs->root[0], lfs->root[1]}; while (true) { nextname: // skip slashes name += strspn(name, "/"); lfs_size_t namelen = strcspn(name, "/"); // skip '.' and root '..' if ((namelen == 1 && memcmp(name, ".", 1) == 0) || (namelen == 2 && memcmp(name, "..", 2) == 0)) { name += namelen; goto nextname; } // skip if matched by '..' in name const char *suffix = name + namelen; lfs_size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { name = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // found path if (name[0] == '\0') { return tag; } // update what we've found if path is only a name if (strchr(name, '/') == NULL) { *path = name; } // only continue if we hit a directory if (lfs_tagtype(tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } // grab the entry data if (lfs_tagid(tag) != 0x3ff) { int32_t res = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tagid(tag), 8), pair); if (res < 0) { return res; } lfs_pairfromle32(pair); } // find entry matching name while (true) { tag = lfs_dir_find(lfs, dir, pair, 0x7c000fff, LFS_MKTAG(LFS_TYPE_NAME, 0, namelen), name); if (tag < 0 && tag != LFS_ERR_NOENT) { return tag; } if (tag != LFS_ERR_NOENT) { // found it break; } if (!dir->split) { // couldn't find it return LFS_ERR_NOENT; } pair[0] = dir->tail[0]; pair[1] = dir->tail[1]; } // to next name name += namelen; } } static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir, int16_t id, struct lfs_info *info) { int32_t tag = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_size+1), info->name); if (tag < 0) { return tag; } info->type = lfs_tagtype(tag); struct lfs_ctz ctz; tag = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz); if (tag < 0) { return tag; } lfs_ctzfromle32(&ctz); if (lfs_tagtype(tag) == LFS_TYPE_CTZSTRUCT) { info->size = ctz.size; } else if (lfs_tagtype(tag) == LFS_TYPE_INLINESTRUCT) { info->size = lfs_tagsize(tag); } return 0; } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_forceconsistency(lfs); if (err) { return err; } lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (!(res == LFS_ERR_NOENT && path)) { return (res < 0) ? res : LFS_ERR_EXIST; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // build up new directory lfs_alloc_ack(lfs); lfs_mdir_t dir; err = lfs_dir_alloc(lfs, &dir, false, cwd.tail); if (err) { return err; } err = lfs_dir_commit(lfs, &dir, NULL); if (err) { return err; } // get next slot and commit uint16_t id = cwd.count; cwd.tail[0] = dir.pair[0]; cwd.tail[1] = dir.pair[1]; lfs_pairtole32(dir.pair); err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_DIR, id, path, nlen, LFS_MKATTR(LFS_TYPE_DIRSTRUCT, id, dir.pair, sizeof(dir.pair), LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, cwd.tail, sizeof(cwd.tail), NULL)))); lfs_pairfromle32(dir.pair); if (err) { return err; } // TODO need ack here? lfs_alloc_ack(lfs); return 0; } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { int32_t tag = lfs_dir_lookup(lfs, &dir->m, &path); if (tag < 0) { return tag; } if (lfs_tagtype(tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } lfs_block_t pair[2]; if (lfs_tagid(tag) == 0x3ff) { // handle root dir separately pair[0] = lfs->root[0]; pair[1] = lfs->root[1]; } else { // get dir pair from parent int32_t res = lfs_dir_get(lfs, &dir->m, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tagid(tag), 8), pair); if (res < 0) { return res; } lfs_pairfromle32(pair); } // fetch first pair int err = lfs_dir_fetch(lfs, &dir->m, pair); if (err) { return err; } // setup entry dir->head[0] = dir->m.pair[0]; dir->head[1] = dir->m.pair[1]; dir->id = 0; dir->pos = 0; // add to list of directories dir->next = lfs->dirs; lfs->dirs = dir; return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // remove from list of directories for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) { if (*p == dir) { *p = dir->next; break; } } return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); // special offset for '.' and '..' if (dir->pos == 0) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->pos += 1; return 1; } else if (dir->pos == 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->pos += 1; return 1; } while (true) { if (dir->id == dir->m.count) { if (!dir->m.split) { return false; } int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail); if (err) { return err; } dir->id = 0; } int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info); if (err && err != LFS_ERR_NOENT) { return err; } dir->id += 1; if (err != LFS_ERR_NOENT) { break; } } dir->pos += 1; return true; } // TODO does this work? int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) { // simply walk from head dir int err = lfs_dir_rewind(lfs, dir); if (err) { return err; } // first two for ./.. dir->pos = lfs_min(2, off); off -= dir->pos; while (off != 0) { dir->id = lfs_min(dir->m.count, off); dir->pos += dir->id; off -= dir->id; if (dir->id == dir->m.count) { if (!dir->m.split) { return LFS_ERR_INVAL; } int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail); if (err) { return err; } } } return 0; } lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) { (void)lfs; return dir->pos; } int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) { // reload the head dir int err = lfs_dir_fetch(lfs, &dir->m, dir->head); if (err) { return err; } dir->m.pair[0] = dir->head[0]; dir->m.pair[1] = dir->head[1]; dir->id = 0; dir->pos = 0; return 0; } /// File index list operations /// static int lfs_ctzindex(lfs_t *lfs, lfs_off_t *off) { lfs_off_t size = *off; lfs_off_t b = lfs->cfg->block_size - 2*4; lfs_off_t i = size / b; if (i == 0) { return 0; } i = (size - 4*(lfs_popc(i-1)+2)) / b; *off = size - b*i - 4*lfs_popc(i); return i; } static int lfs_ctzfind(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) { if (size == 0) { *block = 0xffffffff; *off = 0; return 0; } lfs_off_t current = lfs_ctzindex(lfs, &(lfs_off_t){size-1}); lfs_off_t target = lfs_ctzindex(lfs, &pos); while (current > target) { lfs_size_t skip = lfs_min( lfs_npw2(current-target+1) - 1, lfs_ctz(current)); int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4); head = lfs_fromle32(head); if (err) { return err; } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); current -= 1 << skip; } *block = head; *off = pos; return 0; } static int lfs_ctzextend(lfs_t *lfs, lfs_cache_t *rcache, lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_block_t *block, lfs_off_t *off) { while (true) { // go ahead and grab a block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count); if (true) { err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (size == 0) { *block = nblock; *off = 0; return 0; } size -= 1; lfs_off_t index = lfs_ctzindex(lfs, &size); size += 1; // just copy out the last block if it is incomplete if (size != lfs->cfg->block_size) { for (lfs_off_t i = 0; i < size; i++) { uint8_t data; err = lfs_cache_read(lfs, rcache, NULL, head, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, pcache, rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } *block = nblock; *off = size; return 0; } // append block index += 1; lfs_size_t skips = lfs_ctz(index) + 1; for (lfs_off_t i = 0; i < skips; i++) { head = lfs_tole32(head); err = lfs_cache_prog(lfs, pcache, rcache, nblock, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (i != skips-1) { err = lfs_cache_read(lfs, rcache, NULL, head, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { return err; } } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); } *block = nblock; *off = 4*skips; return 0; } relocate: LFS_DEBUG("Bad block at %d", nblock); // just clear cache and try a new block pcache->block = 0xffffffff; } } static int lfs_ctztraverse(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, int (*cb)(void*, lfs_block_t), void *data) { if (size == 0) { return 0; } lfs_off_t index = lfs_ctzindex(lfs, &(lfs_off_t){size-1}); while (true) { int err = cb(data, head); if (err) { return err; } if (index == 0) { return 0; } lfs_block_t heads[2]; int count = 2 - (index & 1); err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4); heads[0] = lfs_fromle32(heads[0]); heads[1] = lfs_fromle32(heads[1]); if (err) { return err; } for (int i = 0; i < count-1; i++) { err = cb(data, heads[i]); if (err) { return err; } } head = heads[count-1]; index -= count; } } /// Top level file operations /// int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file, const char *path, int flags, const struct lfs_file_config *cfg) { // deorphan if we haven't yet, needed at most once after poweron if ((flags & 3) != LFS_O_RDONLY) { int err = lfs_forceconsistency(lfs); if (err) { return err; } } // allocate entry for file if it doesn't exist lfs_mdir_t cwd; int32_t tag = lfs_dir_lookup(lfs, &cwd, &path); if (tag < 0 && !(tag == LFS_ERR_NOENT && path)) { return tag; } if (tag == LFS_ERR_NOENT) { if (!(flags & LFS_O_CREAT)) { return LFS_ERR_NOENT; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // get next slot and create entry to remember name // TODO do we need to make file registered to list to catch updates from this commit? ie if id/cwd change // TODO don't use inline struct? just leave it out? uint16_t id = cwd.count; int err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_REG, id, path, nlen, LFS_MKATTR(LFS_TYPE_INLINESTRUCT, id, NULL, 0, NULL))); if (err) { return err; } // TODO eh AHHHHHHHHHHHHHH if (id >= cwd.count) { // catch updates from a compact in the above commit id -= cwd.count; cwd.pair[0] = cwd.tail[0]; cwd.pair[1] = cwd.tail[1]; } tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, id, 0); } else if (flags & LFS_O_EXCL) { return LFS_ERR_EXIST; } else if (lfs_tagtype(tag) != LFS_TYPE_REG) { return LFS_ERR_ISDIR; } else if (flags & LFS_O_TRUNC) { // truncate if requested tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, lfs_tagid(tag), 0); flags |= LFS_F_DIRTY; } else { // try to load what's on disk, if it's inlined we'll fix it later tag = lfs_dir_get(lfs, &cwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tagid(tag), 8), &file->ctz); if (tag < 0) { return tag; } lfs_ctzfromle32(&file->ctz); } // setup file struct file->cfg = cfg; file->pair[0] = cwd.pair[0]; file->pair[1] = cwd.pair[1]; file->id = lfs_tagid(tag); file->flags = flags; file->pos = 0; // fetch attrs for (const struct lfs_attr *a = file->cfg->attrs; a; a = a->next) { if ((file->flags & 3) != LFS_O_WRONLY) { int32_t res = lfs_dir_get(lfs, &cwd, 0x7ffff000, LFS_MKTAG(0x100 | a->type, file->id, a->size), a->buffer); if (res < 0 && res != LFS_ERR_NOENT) { return res; } } if ((file->flags & 3) != LFS_O_RDONLY) { if (a->size > lfs->attr_size) { return LFS_ERR_NOSPC; } file->flags |= LFS_F_DIRTY; } } // allocate buffer if needed file->cache.block = 0xffffffff; if (file->cfg->buffer) { file->cache.buffer = file->cfg->buffer; } else if ((file->flags & 3) == LFS_O_RDONLY) { file->cache.buffer = lfs_malloc(lfs->cfg->read_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } else { file->cache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } if (lfs_tagtype(tag) == LFS_TYPE_INLINESTRUCT) { // load inline files file->ctz.head = 0xfffffffe; file->ctz.size = lfs_tagsize(tag); file->flags |= LFS_F_INLINE; file->cache.block = file->ctz.head; file->cache.off = 0; // don't always read (may be new/trunc file) if (file->ctz.size > 0) { int32_t res = lfs_dir_get(lfs, &cwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tagid(tag), file->ctz.size), file->cache.buffer); if (res < 0) { lfs_free(file->cache.buffer); return res; } } } // add to list of files file->next = lfs->files; lfs->files = file; return 0; } int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { static const struct lfs_file_config defaults = {0}; return lfs_file_opencfg(lfs, file, path, flags, &defaults); } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_sync(lfs, file); // remove from list of files for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) { if (*p == file) { *p = file->next; break; } } // clean up memory if (file->cfg->buffer) { lfs_free(file->cache.buffer); } return err; } static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) { while (true) { // just relocate what exists into new block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // either read from dirty cache or disk for (lfs_off_t i = 0; i < file->off; i++) { uint8_t data; err = lfs_cache_read(lfs, &lfs->rcache, &file->cache, file->block, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } // copy over new state of file memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size); file->cache.block = lfs->pcache.block; file->cache.off = lfs->pcache.off; lfs->pcache.block = 0xffffffff; file->block = nblock; return 0; relocate: continue; } } static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) { if (file->flags & LFS_F_READING) { file->flags &= ~LFS_F_READING; } if (file->flags & LFS_F_WRITING) { lfs_off_t pos = file->pos; if (!(file->flags & LFS_F_INLINE)) { // copy over anything after current branch lfs_file_t orig = { .ctz.head = file->ctz.head, .ctz.size = file->ctz.size, .flags = LFS_O_RDONLY, .pos = file->pos, .cache = lfs->rcache, }; lfs->rcache.block = 0xffffffff; while (file->pos < file->ctz.size) { // copy over a byte at a time, leave it up to caching // to make this efficient uint8_t data; lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1); if (res < 0) { return res; } res = lfs_file_write(lfs, file, &data, 1); if (res < 0) { return res; } // keep our reference to the rcache in sync if (lfs->rcache.block != 0xffffffff) { orig.cache.block = 0xffffffff; lfs->rcache.block = 0xffffffff; } } // write out what we have while (true) { int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } break; relocate: LFS_DEBUG("Bad block at %d", file->block); err = lfs_file_relocate(lfs, file); if (err) { return err; } } } else { file->ctz.size = lfs_max(file->pos, file->ctz.size); } // actual file updates file->ctz.head = file->block; file->ctz.size = file->pos; file->flags &= ~LFS_F_WRITING; file->flags |= LFS_F_DIRTY; file->pos = pos; } return 0; } int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) { while (true) { int err = lfs_file_flush(lfs, file); if (err) { return err; } if ((file->flags & LFS_F_DIRTY) && !(file->flags & LFS_F_ERRED) && !lfs_pairisnull(file->pair)) { // update dir entry // TODO keep list of dirs including these guys for no // need of another reload? lfs_mdir_t cwd; err = lfs_dir_fetch(lfs, &cwd, file->pair); if (err) { return err; } uint16_t type; const void *buffer; lfs_size_t size; if (file->flags & LFS_F_INLINE) { // inline the whole file type = LFS_TYPE_INLINESTRUCT; buffer = file->cache.buffer; size = file->ctz.size; } else { // update the ctz reference type = LFS_TYPE_CTZSTRUCT; buffer = &file->ctz; size = sizeof(file->ctz); } // commit file data and attributes lfs_ctztole32(&file->ctz); int err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(type, file->id, buffer, size, LFS_MKATTR(LFS_FROM_ATTRS, file->id, file->cfg->attrs, 0, NULL))); lfs_ctzfromle32(&file->ctz); if (err) { if (err == LFS_ERR_NOSPC && (file->flags & LFS_F_INLINE)) { goto relocate; } return err; } file->flags &= ~LFS_F_DIRTY; } return 0; relocate: // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); err = lfs_file_relocate(lfs, file); if (err) { return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_WRONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_WRITING) { // flush out any writes int err = lfs_file_flush(lfs, file); if (err) { return err; } } if (file->pos >= file->ctz.size) { // eof if past end return 0; } size = lfs_min(size, file->ctz.size - file->pos); nsize = size; while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_READING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { int err = lfs_ctzfind(lfs, &file->cache, NULL, file->ctz.head, file->ctz.size, file->pos, &file->block, &file->off); if (err) { return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_READING; } // read as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); int err = lfs_cache_read(lfs, &file->cache, NULL, file->block, file->off, data, diff); if (err) { return err; } file->pos += diff; file->off += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_READING) { // drop any reads int err = lfs_file_flush(lfs, file); if (err) { return err; } } if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) { file->pos = file->ctz.size; } if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) { // fill with zeros lfs_off_t pos = file->pos; file->pos = file->ctz.size; while (file->pos < pos) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } } if ((file->flags & LFS_F_INLINE) && file->pos + nsize >= lfs->inline_size) { // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); int err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_WRITING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { if (!(file->flags & LFS_F_WRITING) && file->pos > 0) { // find out which block we're extending from int err = lfs_ctzfind(lfs, &file->cache, NULL, file->ctz.head, file->ctz.size, file->pos-1, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } // mark cache as dirty since we may have read data into it file->cache.block = 0xffffffff; } // extend file with new blocks lfs_alloc_ack(lfs); int err = lfs_ctzextend(lfs, &lfs->rcache, &file->cache, file->block, file->pos, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_WRITING; } // program as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); while (true) { int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache, file->block, file->off, data, diff); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } file->flags |= LFS_F_ERRED; return err; } break; relocate: err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } } file->pos += diff; file->off += diff; data += diff; nsize -= diff; lfs_alloc_ack(lfs); } file->flags &= ~LFS_F_ERRED; return size; } lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file, lfs_soff_t off, int whence) { // write out everything beforehand, may be noop if rdonly int err = lfs_file_flush(lfs, file); if (err) { return err; } // update pos if (whence == LFS_SEEK_SET) { file->pos = off; } else if (whence == LFS_SEEK_CUR) { if (off < 0 && (lfs_off_t)-off > file->pos) { return LFS_ERR_INVAL; } file->pos = file->pos + off; } else if (whence == LFS_SEEK_END) { if (off < 0 && (lfs_off_t)-off > file->ctz.size) { return LFS_ERR_INVAL; } file->pos = file->ctz.size + off; } return file->pos; } int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) { if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } lfs_off_t oldsize = lfs_file_size(lfs, file); if (size < oldsize) { // need to flush since directly changing metadata int err = lfs_file_flush(lfs, file); if (err) { return err; } // lookup new head in ctz skip list err = lfs_ctzfind(lfs, &file->cache, NULL, file->ctz.head, file->ctz.size, size, &file->ctz.head, &(lfs_off_t){0}); if (err) { return err; } file->ctz.size = size; file->flags |= LFS_F_DIRTY; } else if (size > oldsize) { lfs_off_t pos = file->pos; // flush+seek if not already at end if (file->pos != oldsize) { int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END); if (err < 0) { return err; } } // fill with zeros while (file->pos < size) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } // restore pos int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET); if (err < 0) { return err; } } return 0; } lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) { (void)lfs; return file->pos; } int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) { lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET); if (res < 0) { return res; } return 0; } lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) { (void)lfs; if (file->flags & LFS_F_WRITING) { return lfs_max(file->pos, file->ctz.size); } else { return file->ctz.size; } } //int lfs_file_getattrs(lfs_t *lfs, lfs_file_t *file, // const struct lfs_attr *attrs, int count) { // // set to null in case we can't find the attrs (missing file?) // for (int j = 0; j < count; j++) { // memset(attrs[j].buffer, 0, attrs[j].size); // } // // // load from disk if we haven't already been deleted // if (!lfs_pairisnull(file->pair)) { // lfs_mdir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, file->pair); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = file->pairoff}; // err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // err = lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); // if (err) { // return err; // } // } // // // override an attrs we have stored locally // for (int i = 0; i < file->attrcount; i++) { // for (int j = 0; j < count; j++) { // if (attrs[j].type == file->attrs[i].type) { // if (attrs[j].size < file->attrs[i].size) { // return LFS_ERR_RANGE; // } // // memset(attrs[j].buffer, 0, attrs[j].size); // memcpy(attrs[j].buffer, // file->attrs[i].buffer, file->attrs[i].size); // } // } // } // // return 0; //} //int lfs_file_setattrs(lfs_t *lfs, lfs_file_t *file, // const struct lfs_attr *attrs, int count) { // if ((file->flags & 3) == LFS_O_RDONLY) { // return LFS_ERR_BADF; // } // // // at least make sure attributes fit // if (!lfs_pairisnull(file->pair)) { // lfs_mdir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, file->pair); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = file->pairoff}; // err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // lfs_ssize_t res = lfs_dir_checkattrs(lfs, &cwd, &entry, attrs, count); // if (res < 0) { // return res; // } // } // // // just tack to the file, will be written at sync time // file->attrs = attrs; // file->attrcount = count; // file->flags |= LFS_F_DIRTY; // // return 0; //} /// General fs operations /// int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_mdir_t cwd; // TODO pass to getinfo? int32_t tag = lfs_dir_lookup(lfs, &cwd, &path); if (tag < 0) { return tag; } if (lfs_tagid(tag) == 0x3ff) { // special case for root strcpy(info->name, "/"); info->type = LFS_TYPE_DIR; return 0; } return lfs_dir_getinfo(lfs, &cwd, lfs_tagid(tag), info); } int lfs_remove(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_forceconsistency(lfs); if (err) { return err; } lfs_mdir_t cwd; err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } int32_t tag = lfs_dir_lookup(lfs, &cwd, &path); if (tag < 0) { return tag; } lfs_mdir_t dir; if (lfs_tagtype(tag) == LFS_TYPE_DIR) { // must be empty before removal lfs_block_t pair[2]; int32_t res = lfs_dir_get(lfs, &cwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tagid(tag), 8), pair); if (res < 0) { return res; } lfs_pairfromle32(pair); int err = lfs_dir_fetch(lfs, &dir, pair); if (err) { return err; } // TODO lfs_dir_empty? if (dir.count > 0 || dir.split) { return LFS_ERR_NOTEMPTY; } // mark fs as orphaned lfs_globaldeorphaned(lfs, false); } // delete the entry err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_DELETE, lfs_tagid(tag), NULL, 0, NULL)); if (err) { return err; } if (lfs_tagtype(tag) == LFS_TYPE_DIR) { int err = lfs_pred(lfs, dir.pair, &cwd); if (err) { return err; } // fix orphan lfs_globaldeorphaned(lfs, true); // steal state // TODO test for global state stealing? cwd.tail[0] = dir.tail[0]; cwd.tail[1] = dir.tail[1]; lfs_globalxor(&lfs->locals, &dir.locals); err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, cwd.tail, sizeof(cwd.tail), NULL)); if (err) { return err; } } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_forceconsistency(lfs); if (err) { return err; } // find old entry lfs_mdir_t oldcwd; int32_t oldtag = lfs_dir_lookup(lfs, &oldcwd, &oldpath); if (oldtag < 0) { return oldtag; } // find new entry lfs_mdir_t newcwd; int32_t prevtag = lfs_dir_lookup(lfs, &newcwd, &newpath); if (prevtag < 0 && prevtag != LFS_ERR_NOENT) { return prevtag; } uint16_t newid = lfs_tagid(prevtag); //bool prevexists = (prevtag != LFS_ERR_NOENT); //bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0); lfs_mdir_t prevdir; if (prevtag != LFS_ERR_NOENT) { // check that we have same type if (lfs_tagtype(prevtag) != lfs_tagtype(oldtag)) { return LFS_ERR_ISDIR; } if (lfs_tagtype(prevtag) == LFS_TYPE_DIR) { // must be empty before removal lfs_block_t prevpair[2]; int32_t res = lfs_dir_get(lfs, &newcwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair); if (res < 0) { return res; } lfs_pairfromle32(prevpair); // must be empty before removal int err = lfs_dir_fetch(lfs, &prevdir, prevpair); if (err) { return err; } if (prevdir.count > 0 || prevdir.split) { return LFS_ERR_NOTEMPTY; } // mark fs as orphaned lfs_globaldeorphaned(lfs, false); } } else { // check that name fits lfs_size_t nlen = strlen(newpath); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // get next id newid = newcwd.count; } // create move to fix later lfs_globalmove(lfs, oldcwd.pair, lfs_tagid(oldtag)); // move over all attributes err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTR(lfs_tagtype(oldtag), newid, newpath, strlen(newpath), LFS_MKATTR(LFS_FROM_MOVE, newid, &oldcwd, lfs_tagid(oldtag), NULL))); if (err) { return err; } // let commit clean up after move (if we're different! otherwise move // logic already fixed it for us) if (lfs_paircmp(oldcwd.pair, newcwd.pair) != 0) { err = lfs_dir_commit(lfs, &oldcwd, NULL); if (err) { return err; } } if (prevtag != LFS_ERR_NOENT && lfs_tagtype(prevtag) == LFS_TYPE_DIR) { int err = lfs_pred(lfs, prevdir.pair, &newcwd); if (err) { return err; } // fix orphan lfs_globaldeorphaned(lfs, true); // steal state // TODO test for global state stealing? newcwd.tail[0] = prevdir.tail[0]; newcwd.tail[1] = prevdir.tail[1]; lfs_globalxor(&lfs->locals, &prevdir.locals); err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, newcwd.tail, sizeof(newcwd.tail), NULL)); if (err) { return err; } } return 0; // if (samepair) { // // update pair if newcwd == oldcwd // oldcwd = newcwd; // } // // err = fix // // // remove old entry // //printf("RENAME DELETE %d %d %d\n", oldcwd.pair[0], oldcwd.pair[1], oldid); // err = lfs_dir_delete(lfs, &oldcwd, oldid); // if (err) { // return err; // } // // // if we were a directory, find pred, replace tail // // TODO can this just deorphan? // if (prevexists && lfs_tagsubtype(prevattr.tag) == LFS_TYPE_DIR) { // err = lfs_forceconsistency(lfs); // if (err) { // return err; // } // } // return 0; } lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path, uint8_t type, void *buffer, lfs_size_t size) { lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (res < 0) { return res; } res = lfs_dir_get(lfs, &cwd, 0x7ffff000, LFS_MKTAG(0x100 | type, lfs_tagid(res), lfs_min(size, lfs->attr_size)), buffer); if (res < 0) { if (res == LFS_ERR_NOENT) { return LFS_ERR_NOATTR; } return res; } return lfs_tagsize(res); } int lfs_setattr(lfs_t *lfs, const char *path, uint8_t type, const void *buffer, lfs_size_t size) { if (size > lfs->attr_size) { return LFS_ERR_NOSPC; } lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (res < 0) { return res; } return lfs_dir_commit(lfs, &cwd, LFS_MKATTR(0x100 | type, lfs_tagid(res), buffer, size, NULL)); } lfs_ssize_t lfs_fs_getattr(lfs_t *lfs, uint8_t type, void *buffer, lfs_size_t size) { lfs_mdir_t superdir; int err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } int32_t res = lfs_dir_get(lfs, &superdir, 0x7ffff000, LFS_MKTAG(0x100 | type, 0, lfs_min(size, lfs->attr_size)), buffer); if (res < 0) { if (res == LFS_ERR_NOENT) { return LFS_ERR_NOATTR; } return res; } return lfs_tagsize(res); } int lfs_fs_setattr(lfs_t *lfs, uint8_t type, const void *buffer, lfs_size_t size) { if (size > lfs->attr_size) { return LFS_ERR_NOSPC; } lfs_mdir_t superdir; int err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } return lfs_dir_commit(lfs, &superdir, LFS_MKATTR(0x100 | type, 0, buffer, size, NULL)); } // // // // const struct lfs_attr *attrs, int count) { // lfs_mdir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_lookup(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); //} // //int lfs_setattrs(lfs_t *lfs, const char *path, // const struct lfs_attr *attrs, int count) { // lfs_mdir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_lookup(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_setattrs(lfs, &cwd, &entry, attrs, count); //} /// Filesystem operations /// static inline void lfs_superblockfromle32(lfs_superblock_t *superblock) { superblock->version = lfs_fromle32(superblock->version); superblock->block_size = lfs_fromle32(superblock->block_size); superblock->block_count = lfs_fromle32(superblock->block_count); superblock->inline_size = lfs_fromle32(superblock->inline_size); superblock->attr_size = lfs_fromle32(superblock->attr_size); superblock->name_size = lfs_fromle32(superblock->name_size); } static inline void lfs_superblocktole32(lfs_superblock_t *superblock) { superblock->version = lfs_tole32(superblock->version); superblock->block_size = lfs_tole32(superblock->block_size); superblock->block_count = lfs_tole32(superblock->block_count); superblock->inline_size = lfs_tole32(superblock->inline_size); superblock->attr_size = lfs_tole32(superblock->attr_size); superblock->name_size = lfs_tole32(superblock->name_size); } static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) { lfs->cfg = cfg; // setup read cache lfs->rcache.block = 0xffffffff; if (lfs->cfg->read_buffer) { lfs->rcache.buffer = lfs->cfg->read_buffer; } else { lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size); if (!lfs->rcache.buffer) { return LFS_ERR_NOMEM; } } // setup program cache lfs->pcache.block = 0xffffffff; if (lfs->cfg->prog_buffer) { lfs->pcache.buffer = lfs->cfg->prog_buffer; } else { lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!lfs->pcache.buffer) { return LFS_ERR_NOMEM; } } // setup lookahead, round down to nearest 32-bits LFS_ASSERT(lfs->cfg->lookahead % 32 == 0); LFS_ASSERT(lfs->cfg->lookahead > 0); if (lfs->cfg->lookahead_buffer) { lfs->free.buffer = lfs->cfg->lookahead_buffer; } else { lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8); if (!lfs->free.buffer) { return LFS_ERR_NOMEM; } } // check that program and read sizes are multiples of the block size LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0); LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0); // check that the block size is large enough to fit ctz pointers LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4)) <= lfs->cfg->block_size); // check that the size limits are sane LFS_ASSERT(lfs->cfg->inline_size <= LFS_INLINE_MAX); LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->read_size); lfs->inline_size = lfs->cfg->inline_size; if (!lfs->inline_size) { lfs->inline_size = lfs_min(LFS_INLINE_MAX, lfs->cfg->read_size); } LFS_ASSERT(lfs->cfg->attr_size <= LFS_ATTR_MAX); lfs->attr_size = lfs->cfg->attr_size; if (!lfs->attr_size) { lfs->attr_size = LFS_ATTR_MAX; } LFS_ASSERT(lfs->cfg->name_size <= LFS_NAME_MAX); lfs->name_size = lfs->cfg->name_size; if (!lfs->name_size) { lfs->name_size = LFS_NAME_MAX; } // setup default state lfs->root[0] = 0xffffffff; lfs->root[1] = 0xffffffff; lfs->files = NULL; lfs->dirs = NULL; lfs_globalones(&lfs->globals); lfs_globalzero(&lfs->locals); return 0; } static int lfs_deinit(lfs_t *lfs) { // free allocated memory if (!lfs->cfg->read_buffer) { lfs_free(lfs->rcache.buffer); } if (!lfs->cfg->prog_buffer) { lfs_free(lfs->pcache.buffer); } if (!lfs->cfg->lookahead_buffer) { lfs_free(lfs->free.buffer); } return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // create free lookahead memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); lfs->free.off = 0; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count); lfs->free.i = 0; lfs_alloc_ack(lfs); // create superblock dir lfs_mdir_t dir; err = lfs_dir_alloc(lfs, &dir, false, (const lfs_block_t[2]){0xffffffff, 0xffffffff}); if (err) { return err; } // write root directory lfs_mdir_t root; err = lfs_dir_alloc(lfs, &root, false, (const lfs_block_t[2]){0xffffffff, 0xffffffff}); if (err) { return err; } err = lfs_dir_commit(lfs, &root, NULL); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; dir.tail[0] = lfs->root[0]; dir.tail[1] = lfs->root[1]; // write one superblock lfs_superblock_t superblock = { .magic = {"littlefs"}, .version = LFS_DISK_VERSION, .block_size = lfs->cfg->block_size, .block_count = lfs->cfg->block_count, .inline_size = lfs->inline_size, .attr_size = lfs->attr_size, .name_size = lfs->name_size, }; lfs_superblocktole32(&superblock); lfs_pairtole32(lfs->root); err = lfs_dir_commit(lfs, &dir, LFS_MKATTR(LFS_TYPE_SUPERBLOCK, 0, &superblock, sizeof(superblock), LFS_MKATTR(LFS_TYPE_DIRSTRUCT, 0, lfs->root, sizeof(lfs->root), NULL))); lfs_pairfromle32(lfs->root); lfs_superblockfromle32(&superblock); if (err) { return err; } // sanity check that fetch works err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } return lfs_deinit(lfs); } int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // setup free lookahead lfs->free.off = 0; lfs->free.size = 0; lfs->free.i = 0; lfs_alloc_ack(lfs); // load superblock lfs_mdir_t dir; err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { if (err == LFS_ERR_CORRUPT) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); } return err; } lfs_superblock_t superblock; int32_t res = lfs_dir_get(lfs, &dir, 0x7ffff000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, sizeof(superblock)), &superblock); if (res < 0) { return res; } lfs_superblockfromle32(&superblock); if (memcmp(superblock.magic, "littlefs", 8) != 0) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); return LFS_ERR_CORRUPT; } uint16_t major_version = (0xffff & (superblock.version >> 16)); uint16_t minor_version = (0xffff & (superblock.version >> 0)); if ((major_version != LFS_DISK_VERSION_MAJOR || minor_version > LFS_DISK_VERSION_MINOR)) { LFS_ERROR("Invalid version %d.%d", major_version, minor_version); return LFS_ERR_INVAL; } res = lfs_dir_get(lfs, &dir, 0x7ffff000, LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, sizeof(lfs->root)), &lfs->root); if (res < 0) { return res; } lfs_pairfromle32(lfs->root); if (superblock.inline_size) { if (superblock.inline_size > lfs->inline_size) { LFS_ERROR("Unsupported inline size (%d > %d)", superblock.inline_size, lfs->inline_size); return LFS_ERR_INVAL; } lfs->inline_size = superblock.inline_size; } if (superblock.attr_size) { if (superblock.attr_size > lfs->attr_size) { LFS_ERROR("Unsupported attr size (%d > %d)", superblock.attr_size, lfs->attr_size); return LFS_ERR_INVAL; } lfs->attr_size = superblock.attr_size; } if (superblock.name_size) { if (superblock.name_size > lfs->name_size) { LFS_ERROR("Unsupported name size (%d > %d)", superblock.name_size, lfs->name_size); return LFS_ERR_INVAL; } lfs->name_size = superblock.name_size; } // scan for any global updates err = lfs_scan(lfs); if (err) { return err; } return 0; } int lfs_unmount(lfs_t *lfs) { return lfs_deinit(lfs); } /// Internal filesystem filesystem operations /// int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void *data, lfs_block_t block), void *data) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_mdir_t dir = {.tail = {0, 1}}; while (!lfs_pairisnull(dir.tail)) { for (int i = 0; i < 2; i++) { int err = cb(data, dir.tail[i]); if (err) { return err; } } // iterate through ids in directory int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } for (uint16_t id = 0; id < dir.count; id++) { struct lfs_ctz ctz; int32_t tag = lfs_dir_get(lfs, &dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz); if (tag < 0) { if (tag == LFS_ERR_NOENT) { continue; } return tag; } lfs_ctzfromle32(&ctz); if (lfs_tagtype(tag) == LFS_TYPE_CTZSTRUCT) { int err = lfs_ctztraverse(lfs, &lfs->rcache, NULL, ctz.head, ctz.size, cb, data); if (err) { return err; } } } } // iterate over any open files for (lfs_file_t *f = lfs->files; f; f = f->next) { if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctztraverse(lfs, &lfs->rcache, &f->cache, f->ctz.head, f->ctz.size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctztraverse(lfs, &lfs->rcache, &f->cache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } /* int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } lfs_mdir_t dir; int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // iterate over contents lfs_mattr_t entry; while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) { err = lfs_dir_get(lfs, &dir, dir.off, &entry.d, sizeof(entry.d)); lfs_entry_fromle32(&entry.d); if (err) { return err; } dir.off += lfs_entry_size(&entry); if ((0x70 & entry.d.type) == LFS_TYPE_CTZSTRUCT) { err = lfs_ctztraverse(lfs, &lfs->rcache, NULL, entry.d.u.file.head, entry.d.u.file.size, cb, data); if (err) { return err; } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (lfs_pairisnull(cwd)) { break; } } // iterate over any open files for (lfs_file_t *f = lfs->files; f; f = f->next) { if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctztraverse(lfs, &lfs->rcache, &f->cache, f->head, f->size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctztraverse(lfs, &lfs->rcache, &f->cache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } */ static int lfs_pred(lfs_t *lfs, const lfs_block_t pair[2], lfs_mdir_t *pdir) { if (lfs_pairisnull(lfs->root)) { return LFS_ERR_NOENT; } // iterate over all directory directory entries pdir->tail[0] = 0; pdir->tail[1] = 1; while (!lfs_pairisnull(pdir->tail)) { if (lfs_paircmp(pdir->tail, pair) == 0) { //return true; // TODO should we return true only if pred is part of dir? return 0; } int err = lfs_dir_fetch(lfs, pdir, pdir->tail); if (err) { return err; } } return LFS_ERR_NOENT; } static int32_t lfs_parent(lfs_t *lfs, const lfs_block_t pair[2], lfs_mdir_t *parent) { if (lfs_pairisnull(lfs->root)) { return LFS_ERR_NOENT; } // search for both orderings so we can reuse the find function lfs_block_t child[2] = {pair[0], pair[1]}; lfs_pairtole32(child); for (int i = 0; i < 2; i++) { // iterate over all directory directory entries parent->tail[0] = 0; parent->tail[1] = 1; while (!lfs_pairisnull(parent->tail)) { int32_t tag = lfs_dir_find(lfs, parent, parent->tail, 0x7fc00fff, LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, sizeof(child)), child); if (tag != LFS_ERR_NOENT) { return tag; } } lfs_pairswap(child); } return LFS_ERR_NOENT; } // TODO rename to lfs_dir_relocate? static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], lfs_block_t newpair[2]) { // TODO name lfs_dir_relocate? // find parent lfs_mdir_t parent; int32_t tag = lfs_parent(lfs, oldpair, &parent); if (tag < 0 && tag != LFS_ERR_NOENT) { return tag; } if (tag != LFS_ERR_NOENT) { // update disk, this creates a desync lfs_pairtole32(newpair); int err = lfs_dir_commit(lfs, &parent, &(lfs_mattr_t){.tag=tag, .buffer=newpair}); lfs_pairfromle32(newpair); if (err) { return err; } // update internal root if (lfs_paircmp(oldpair, lfs->root) == 0) { LFS_DEBUG("Relocating root %d %d", newpair[0], newpair[1]); lfs->root[0] = newpair[0]; lfs->root[1] = newpair[1]; } // clean up bad block, which should now be a desync return lfs_forceconsistency(lfs); } // find pred int err = lfs_pred(lfs, oldpair, &parent); if (err && err != LFS_ERR_NOENT) { return err; } // if we can't find dir, it must be new if (err != LFS_ERR_NOENT) { // just replace bad pair, no desync can occur parent.tail[0] = newpair[0]; parent.tail[1] = newpair[1]; int err = lfs_dir_commit(lfs, &parent, LFS_MKATTR(LFS_TYPE_TAIL + parent.split, 0x3ff, parent.tail, sizeof(parent.tail), NULL)); if (err) { return err; } } return 0; } int lfs_scan(lfs_t *lfs) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over all directory directory entries lfs_mdir_t dir = {.tail = {0, 1}}; while (!lfs_pairisnull(dir.tail)) { int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } // xor together indirect deletes lfs_globalxor(&lfs->locals, &dir.locals); } // update littlefs with globals // TODO does this only run once? // TODO Should we inline this into init?? lfs_globalfromle32(&lfs->locals); lfs_globalxor(&lfs->globals, &lfs->locals); lfs_globalzero(&lfs->locals); if (!lfs_pairisnull(lfs_globalmovepair(lfs))) { LFS_DEBUG("Found move %d %d %d", lfs_globalmovepair(lfs)[0], lfs_globalmovepair(lfs)[1], lfs_globalmoveid(lfs)); } return 0; } int lfs_forceconsistency(lfs_t *lfs) { if (!lfs_globalisdeorphaned(lfs)) { // Fix any orphans lfs_mdir_t pdir = {.split = true}; lfs_mdir_t dir = {.tail = {0, 1}}; // iterate over all directory directory entries while (!lfs_pairisnull(dir.tail)) { int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } // check head blocks for orphans if (!pdir.split) { // check if we have a parent lfs_mdir_t parent; int32_t tag = lfs_parent(lfs, pdir.tail, &parent); if (tag < 0 && tag != LFS_ERR_NOENT) { return tag; } if (tag == LFS_ERR_NOENT) { // we are an orphan LFS_DEBUG("Found orphan %d %d", pdir.tail[0], pdir.tail[1]); pdir.tail[0] = dir.tail[0]; pdir.tail[1] = dir.tail[1]; err = lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); if (err) { return err; } break; } lfs_block_t pair[2]; int32_t res = lfs_dir_get(lfs, &parent, 0x7ffff000, tag, pair); if (res < 0) { return res; } lfs_pairfromle32(pair); if (!lfs_pairsync(pair, pdir.tail)) { // we have desynced LFS_DEBUG("Found half-orphan %d %d", pair[0], pair[1]); pdir.tail[0] = pair[0]; pdir.tail[1] = pair[1]; err = lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); if (err) { return err; } break; } } memcpy(&pdir, &dir, sizeof(pdir)); } // mark orphan as fixed lfs_globaldeorphaned(lfs, false); } if (lfs_globalmoveid(lfs) != 0x3ff) { // Fix bad moves LFS_DEBUG("Fixing move %d %d %d", // TODO move to just deorphan? lfs_globalmovepair(lfs)[0], lfs_globalmovepair(lfs)[1], lfs_globalmoveid(lfs)); // fetch and delete the moved entry lfs_mdir_t movedir; int err = lfs_dir_fetch(lfs, &movedir, lfs_globalmovepair(lfs)); if (err) { return err; } // rely on cancel logic inside commit err = lfs_dir_commit(lfs, &movedir, NULL); if (err) { return err; } } return 0; } /// External filesystem filesystem operations /// //int lfs_fs_getattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { // lfs_mdir_t dir; // int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = sizeof(dir.d)}; // err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // if (err != LFS_ERR_NOENT) { // if (!err) { // break; // } // return err; // } // // lfs_mdir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_lookup(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_getinfo(lfs, &cwd, &entry, info); // return lfs_dir_getattrs(lfs, &dir, &entry, attrs, count); //} // //int lfs_fs_setattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { // lfs_mdir_t dir; // int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = sizeof(dir.d)}; // err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // return lfs_dir_setattrs(lfs, &dir, &entry, attrs, count); //} // TODO need lfs? static int lfs_fs_size_count(void *p, lfs_block_t block) { lfs_size_t *size = p; *size += 1; return 0; } lfs_ssize_t lfs_fs_size(lfs_t *lfs) { lfs_size_t size = 0; int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size); if (err) { return err; } return size; }