/* * The little filesystem * * Copyright (c) 2017 Christopher Haster * Distributed under the MIT license */ #include "lfs.h" #include "lfs_util.h" #include #include /// Block device operations /// static int lfs_bd_info(lfs_t *lfs, struct lfs_bd_info *info) { return lfs->bd_ops->info(lfs->bd, info); } static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, void *buffer) { return lfs->bd_ops->read(lfs->bd, block, off, size, buffer); } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { return lfs->bd_ops->prog(lfs->bd, block, off, size, buffer); } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size) { return lfs->bd_ops->erase(lfs->bd, block, off, size); } static int lfs_bd_sync(lfs_t *lfs) { return lfs->bd_ops->sync(lfs->bd); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_bd_read(lfs, block, off+i, 1, &c); if (err) { return err; } if (c != *data) { return false; } data += 1; } return true; } /// Block allocator /// static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t off = block - lfs->free.begin; if (off < LFS_CFG_LOOKAHEAD) { lfs->lookahead[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc_stride(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t noff = block - lfs->free.begin; lfs_block_t off = lfs->free.end - lfs->free.begin; if (noff < off) { lfs->free.end = noff + lfs->free.begin; } return 0; } static int lfs_alloc_scan(lfs_t *lfs) { lfs_block_t start = lfs->free.begin; while (true) { // mask out blocks in lookahead region memset(lfs->lookahead, 0, sizeof(lfs->lookahead)); int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } // check if we've found a free block for (uint32_t off = 0; off < LFS_CFG_LOOKAHEAD; off++) { if (lfs->lookahead[off / 32] & (1U << (off % 32))) { continue; } // found free block, now find stride of free blocks // since this is relatively cheap (stress on relatively) lfs->free.begin += off; lfs->free.end = lfs->block_count; // before superblock // find maximum stride in tree return lfs_traverse(lfs, lfs_alloc_stride, lfs); } // continue to next lookahead unless we've searched the whole device if (start-1 - lfs->free.begin < LFS_CFG_LOOKAHEAD) { return 0; } // continue to next lookahead region lfs->free.begin += LFS_CFG_LOOKAHEAD; } } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { // If we don't remember any free blocks we will need to start searching if (lfs->free.begin == lfs->free.end) { int err = lfs_alloc_scan(lfs); if (err) { return err; } if (lfs->free.begin == lfs->free.end) { // Still can't allocate a block? check for orphans int err = lfs_deorphan(lfs); if (err) { return err; } err = lfs_alloc_scan(lfs); if (err) { return err; } if (lfs->free.begin == lfs->free.end) { // Ok, it's true, we're out of space return LFS_ERROR_NO_SPACE; } } } // Take first available block *block = lfs->free.begin; lfs->free.begin += 1; return 0; } static int lfs_alloc_erased(lfs_t *lfs, lfs_block_t *block) { // TODO rm me? int err = lfs_alloc(lfs, block); if (err) { return err; } return lfs_bd_erase(lfs, *block, 0, lfs->block_size); } /// Index list operations /// // Next index offset static lfs_off_t lfs_indexnext(lfs_t *lfs, lfs_off_t ioff) { ioff += 1; while (ioff % lfs->words == 0) { ioff += lfs_min(lfs_ctz(ioff/lfs->words + 1), lfs->words-1) + 1; } return ioff; } static lfs_off_t lfs_indexfrom(lfs_t *lfs, lfs_off_t off) { lfs_off_t i = 0; while (off > lfs->block_size) { i = lfs_indexnext(lfs, i); off -= lfs->block_size; } return i; } // Find index in index chain given its index offset static int lfs_index_find(lfs_t *lfs, lfs_block_t head, lfs_size_t icount, lfs_off_t ioff, lfs_block_t *block) { lfs_off_t iitarget = ioff / lfs->words; lfs_off_t iicurrent = (icount-1) / lfs->words; while (iitarget != iicurrent) { lfs_size_t skip = lfs_min( lfs_min(lfs_ctz(iicurrent+1), lfs->words-1), lfs_npw2((iitarget ^ iicurrent)+1)-1); int err = lfs_bd_read(lfs, head, 4*skip, 4, &head); if (err) { return err; } iicurrent -= 1 << skip; } return lfs_bd_read(lfs, head, 4*(ioff % lfs->words), 4, block); } // Append index to index chain, updates head and icount static int lfs_index_append(lfs_t *lfs, lfs_block_t *headp, lfs_size_t *icountp, lfs_block_t block) { lfs_block_t head = *headp; lfs_size_t ioff = *icountp - 1; ioff += 1; while (ioff % lfs->words == 0) { lfs_block_t nhead; int err = lfs_alloc_erased(lfs, &nhead); if (err) { return err; } lfs_off_t skips = lfs_min( lfs_ctz(ioff/lfs->words + 1), lfs->words-2) + 1; for (lfs_off_t i = 0; i < skips; i++) { err = lfs_bd_prog(lfs, nhead, 4*i, 4, &head); if (err) { return err; } if (head && i != skips-1) { err = lfs_bd_read(lfs, head, 4*i, 4, &head); if (err) { return err; } } } ioff += skips; head = nhead; } int err = lfs_bd_prog(lfs, head, 4*(ioff % lfs->words), 4, &block); if (err) { return err; } *headp = head; *icountp = ioff + 1; return 0; } static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head, lfs_size_t icount, int (*cb)(void*, lfs_block_t), void *data) { lfs_off_t iicurrent = (icount-1) / lfs->words; while (iicurrent > 0) { int err = cb(data, head); if (err) { return err; } lfs_size_t skip = lfs_min(lfs_ctz(iicurrent+1), lfs->words-1); for (lfs_off_t i = skip; i < lfs->words; i++) { lfs_block_t block; int err = lfs_bd_read(lfs, head, 4*i, 4, &block); if (err) { return err; } err = cb(data, block); if (err) { return err; } } err = lfs_bd_read(lfs, head, 0, 4, &head); if (err) { return err; } iicurrent -= 1; } int err = cb(data, head); if (err) { return err; } for (lfs_off_t i = 0; i < lfs->words; i++) { lfs_block_t block; int err = lfs_bd_read(lfs, head, 4*i, 4, &block); if (err) { return err; } err = cb(data, block); if (err) { return err; } } return 0; } /// Metadata pair and directory operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pairisnull(const lfs_block_t pair[2]) { return !pair[0] || !pair[1]; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !((paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0])); } static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) { // Allocate pair of dir blocks for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[i]); if (err) { return err; } } // Rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev); if (err) { return err; } // Set defaults dir->d.rev += 1; dir->d.size = sizeof(dir->d); dir->d.tail[0] = 0; dir->d.tail[1] = 0; dir->off = sizeof(dir->d); // Don't write out yet, let caller take care of that return 0; } static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, const lfs_block_t pair[2]) { // copy out pair, otherwise may be aliasing dir const lfs_block_t tpair[2] = {pair[0], pair[1]}; bool valid = false; // check both blocks for the most recent revision for (int i = 0; i < 2; i++) { struct lfs_disk_dir test; int err = lfs_bd_read(lfs, tpair[i], 0, sizeof(test), &test); if (err) { return err; } if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) { continue; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(test), &test); for (lfs_off_t j = sizeof(test); j < lfs->block_size; j += 4) { uint32_t word; int err = lfs_bd_read(lfs, tpair[i], j, 4, &word); if (err) { return err; } crc = lfs_crc(crc, 4, &word); } if (crc != 0) { continue; } valid = true; // setup dir in case it's valid dir->pair[0] = tpair[(i+0) % 2]; dir->pair[1] = tpair[(i+1) % 2]; dir->off = sizeof(dir->d); dir->d = test; } if (!valid) { LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]); return LFS_ERROR_CORRUPT; } return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir, const lfs_entry_t *entry, const void *data) { dir->d.rev += 1; lfs_pairswap(dir->pair); int err = lfs_bd_erase(lfs, dir->pair[0], 0, lfs->block_size); if (err) { return err; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(dir->d), &dir->d); err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d); if (err) { return err; } lfs_off_t off = sizeof(dir->d); lfs_size_t size = 0x7fffffff & dir->d.size; while (off < size) { if (entry && off == entry->off) { crc = lfs_crc(crc, sizeof(entry->d), &entry->d); int err = lfs_bd_prog(lfs, dir->pair[0], off, sizeof(entry->d), &entry->d); if (err) { return err; } off += sizeof(entry->d); if (data) { crc = lfs_crc(crc, entry->d.len - sizeof(entry->d), data); int err = lfs_bd_prog(lfs, dir->pair[0], off, entry->d.len - sizeof(entry->d), data); if (err) { return err; } off += entry->d.len - sizeof(entry->d); } } else { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[1], off, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, &data); err = lfs_bd_prog(lfs, dir->pair[0], off, 1, &data); if (err) { return err; } off += 1; } } while (off < lfs->block_size-4) { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[0], off, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, &data); off += 1; } err = lfs_bd_prog(lfs, dir->pair[0], lfs->block_size-4, 4, &crc); if (err) { return err; } return lfs_bd_sync(lfs); } static int lfs_dir_shift(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { dir->d.rev += 1; dir->d.size -= entry->d.len; lfs_pairswap(dir->pair); int err = lfs_bd_erase(lfs, dir->pair[0], 0, lfs->block_size); if (err) { return err; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(dir->d), &dir->d); err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d); if (err) { return err; } lfs_off_t woff = sizeof(dir->d); lfs_off_t roff = sizeof(dir->d); lfs_size_t size = 0x7fffffff & dir->d.size; while (woff < size) { if (roff == entry->off) { roff += entry->d.len; } else { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[1], roff, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, (void*)&data); err = lfs_bd_prog(lfs, dir->pair[0], woff, 1, &data); if (err) { return err; } woff += 1; roff += 1; } } while (woff < lfs->block_size-4) { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[0], woff, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, &data); woff += 1; } err = lfs_bd_prog(lfs, dir->pair[0], lfs->block_size-4, 4, &crc); if (err) { return err; } return lfs_bd_sync(lfs); } static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const void *data) { // check if we fit, if top bit is set we do not and move on while (true) { if (dir->d.size + entry->d.len <= lfs->block_size - 4) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->d.size; dir->d.size += entry->d.len; return lfs_dir_commit(lfs, dir, entry, data); } if (!(0x80000000 & dir->d.size)) { lfs_dir_t newdir; int err = lfs_dir_alloc(lfs, &newdir); if (err) { return err; } newdir.d.tail[0] = dir->d.tail[0]; newdir.d.tail[1] = dir->d.tail[1]; entry->pair[0] = newdir.pair[0]; entry->pair[1] = newdir.pair[1]; entry->off = newdir.d.size; newdir.d.size += entry->d.len; err = lfs_dir_commit(lfs, &newdir, entry, data); if (err) { return err; } dir->d.size |= 0x80000000; dir->d.tail[0] = newdir.pair[0]; dir->d.tail[1] = newdir.pair[1]; return lfs_dir_commit(lfs, dir, NULL, NULL); } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } } } static int lfs_dir_remove(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { // either shift out the one entry or remove the whole dir block if (dir->d.size == sizeof(dir->d)) { lfs_dir_t pdir; int err = lfs_dir_fetch(lfs, &pdir, lfs->root); if (err) { return err; } while (lfs_paircmp(pdir.d.tail, dir->pair) != 0) { int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail); if (err) { return err; } } // TODO easier check for head block? (common case) if (!(pdir.d.size & 0x80000000)) { return lfs_dir_shift(lfs, dir, entry); } else { pdir.d.tail[0] = dir->d.tail[0]; pdir.d.tail[1] = dir->d.tail[1]; return lfs_dir_commit(lfs, &pdir, NULL, NULL); } } else { return lfs_dir_shift(lfs, dir, entry); } } static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { while (true) { if ((0x7fffffff & dir->d.size) - dir->off < sizeof(entry->d)) { if (!(dir->d.size >> 31)) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->off; return LFS_ERROR_NO_ENTRY; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } dir->off = sizeof(dir->d); } int err = lfs_bd_read(lfs, dir->pair[0], dir->off, sizeof(entry->d), &entry->d); if (err) { return err; } dir->off += entry->d.len; if ((0xff & entry->d.type) == LFS_TYPE_REG || (0xff & entry->d.type) == LFS_TYPE_DIR) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->off - entry->d.len; return 0; } } } static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const char **path) { const char *pathname = *path; size_t pathlen; while (true) { nextname: // skip slashes pathname += strspn(pathname, "/"); pathlen = strcspn(pathname, "/"); // skip '.' and root '..' if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) || (pathlen == 2 && memcmp(pathname, "..", 2) == 0)) { pathname += pathlen; goto nextname; } // skip if matched by '..' in name const char *suffix = pathname + pathlen; size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { pathname = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // find path while (true) { int err = lfs_dir_next(lfs, dir, entry); if (err) { return err; } if (entry->d.len - sizeof(entry->d) != pathlen) { continue; } int ret = lfs_bd_cmp(lfs, dir->pair[0], entry->off + sizeof(entry->d), pathlen, pathname); if (ret < 0) { return ret; } // Found match if (ret == true) { break; } } pathname += pathlen; pathname += strspn(pathname, "/"); if (pathname[0] == '\0') { return 0; } // continue on if we hit a directory if (entry->d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir); if (err) { return err; } *path = pathname; } return 0; } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // fetch parent directory lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err != LFS_ERROR_NO_ENTRY) { return err ? err : LFS_ERROR_EXISTS; } // Build up new directory lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir); if (err) { return err; } dir.d.tail[0] = cwd.d.tail[0]; dir.d.tail[1] = cwd.d.tail[1]; err = lfs_dir_commit(lfs, &dir, NULL, NULL); if (err) { return err; } entry.d.type = LFS_TYPE_DIR; entry.d.len = sizeof(entry.d) + strlen(path); entry.d.u.dir[0] = dir.pair[0]; entry.d.u.dir[1] = dir.pair[1]; cwd.d.tail[0] = dir.pair[0]; cwd.d.tail[1] = dir.pair[1]; return lfs_dir_append(lfs, &cwd, &entry, path); } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { dir->pair[0] = lfs->root[0]; dir->pair[1] = lfs->root[1]; int err = lfs_dir_fetch(lfs, dir, dir->pair); if (err) { return err; } else if (strcmp(path, "/") == 0) { // special offset for '.' and '..' dir->off = sizeof(dir->d) - 2; return 0; } lfs_entry_t entry; err = lfs_dir_find(lfs, dir, &entry, &path); if (err) { return err; } else if (entry.d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } err = lfs_dir_fetch(lfs, dir, entry.d.u.dir); if (err) { return err; } // special offset for '.' and '..' dir->off = sizeof(dir->d) - 2; return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // Do nothing, dir is always synchronized return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); if (dir->off == sizeof(dir->d) - 2) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->off += 1; return 1; } else if (dir->off == sizeof(dir->d) - 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->off += 1; return 1; } lfs_entry_t entry; int err = lfs_dir_next(lfs, dir, &entry); if (err) { return (err == LFS_ERROR_NO_ENTRY) ? 0 : err; } info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, dir->pair[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 1; } /// Top level file operations /// int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { // Allocate entry for file if it doesn't exist // TODO check open files lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } err = lfs_dir_find(lfs, &cwd, &file->entry, &path); if (err && !((flags & LFS_O_CREAT) && err == LFS_ERROR_NO_ENTRY)) { return err; } else if (err != LFS_ERROR_NO_ENTRY && file->entry.d.type == LFS_TYPE_DIR) { return LFS_ERROR_IS_DIR; } if ((flags & LFS_O_CREAT) && err == LFS_ERROR_NO_ENTRY) { // create entry to remember name file->entry.d.type = 1; file->entry.d.len = sizeof(file->entry.d) + strlen(path); file->entry.d.u.file.head = 0; file->entry.d.u.file.size = 0; int err = lfs_dir_append(lfs, &cwd, &file->entry, path); if (err) { return err; } } file->head = file->entry.d.u.file.head; file->size = file->entry.d.u.file.size; file->windex = lfs_indexfrom(lfs, file->size); file->rblock = 0; file->rindex = 0; file->roff = 0; // TODO do this lazily in write? // TODO cow the head i/d block if (file->size < lfs->block_size) { file->wblock = file->head; } else { int err = lfs_index_find(lfs, file->head, file->windex, file->windex, &file->wblock); if (err) { return err; } } return 0; } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { // Store file lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, file->entry.pair); if (err) { return err; } file->entry.d.u.file.head = file->head; file->entry.d.u.file.size = file->size; return lfs_dir_commit(lfs, &cwd, &file->entry, NULL); } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; while (nsize > 0) { lfs_off_t woff = file->size % lfs->block_size; if (file->size == 0) { int err = lfs_alloc_erased(lfs, &file->wblock); if (err) { return err; } file->head = file->wblock; file->windex = 0; } else if (woff == 0) { int err = lfs_alloc_erased(lfs, &file->wblock); if (err) { return err; } err = lfs_index_append(lfs, &file->head, &file->windex, file->wblock); if (err) { return err; } } lfs_size_t diff = lfs_min(nsize, lfs->block_size - woff); int err = lfs_bd_prog(lfs, file->wblock, woff, diff, data); if (err) { return err; } file->size += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; while (nsize > 0 && file->roff < file->size) { lfs_off_t roff = file->roff % lfs->block_size; // TODO cache index blocks if (file->size < lfs->block_size) { file->rblock = file->head; } else if (roff == 0) { int err = lfs_index_find(lfs, file->head, file->windex, file->rindex, &file->rblock); if (err) { return err; } file->rindex = lfs_indexnext(lfs, file->rindex); } lfs_size_t diff = lfs_min( lfs_min(nsize, file->size-file->roff), lfs->block_size - roff); int err = lfs_bd_read(lfs, file->rblock, roff, diff, data); if (err) { return err; } file->roff += diff; data += diff; nsize -= diff; } return size - nsize; } /// Generic filesystem operations /// static int lfs_configure(lfs_t *lfs, const struct lfs_config *config) { lfs->bd = config->bd; lfs->bd_ops = config->bd_ops; struct lfs_bd_info info; int err = lfs_bd_info(lfs, &info); if (err) { return err; } if (config->read_size) { if (config->read_size < info.read_size || config->read_size % info.read_size != 0) { LFS_ERROR("Invalid read size %u, device has %u\n", config->read_size, info.read_size); return LFS_ERROR_INVALID; } lfs->read_size = config->read_size; } else { lfs->read_size = info.read_size; } if (config->prog_size) { if (config->prog_size < info.prog_size || config->prog_size % info.prog_size != 0) { LFS_ERROR("Invalid prog size %u, device has %u\n", config->prog_size, info.prog_size); return LFS_ERROR_INVALID; } lfs->prog_size = config->prog_size; } else { lfs->prog_size = info.prog_size; } if (config->block_size) { if (config->block_size < info.erase_size || config->block_size % info.erase_size != 0) { LFS_ERROR("Invalid block size %u, device has %u\n", config->prog_size, info.prog_size); return LFS_ERROR_INVALID; } lfs->block_size = config->block_size; } else { lfs->block_size = lfs_min(512, info.erase_size); } if (config->block_count) { if (config->block_count > info.total_size/info.erase_size) { LFS_ERROR("Invalid block size %u, device has %u\n", config->block_size, (uint32_t)(info.total_size/info.erase_size)); return LFS_ERROR_INVALID; } lfs->block_count = config->block_count; } else { lfs->block_count = info.total_size / info.erase_size; } lfs->words = lfs->block_size / sizeof(uint32_t); return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *config) { int err = lfs_configure(lfs, config); if (err) { return err; } // Create free list lfs->free.begin = 0; lfs->free.end = lfs->block_count-1; // Create superblock dir lfs_dir_t superdir; err = lfs_dir_alloc(lfs, &superdir); if (err) { return err; } // Write root directory lfs_dir_t root; err = lfs_dir_alloc(lfs, &root); if (err) { return err; } err = lfs_dir_commit(lfs, &root, NULL, NULL); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; // Write superblocks lfs_superblock_t superblock = { .off = sizeof(superdir.d), .d.type = LFS_TYPE_SUPERBLOCK, .d.len = sizeof(superblock.d), .d.version = 0x00000001, .d.magic = {"littlefs"}, .d.block_size = lfs->block_size, .d.block_count = lfs->block_count, .d.root = {lfs->root[0], lfs->root[1]}, }; superdir.d.tail[0] = root.pair[0]; superdir.d.tail[1] = root.pair[1]; superdir.d.size += sizeof(superdir.d); for (int i = 0; i < 2; i++) { // Write both pairs for extra safety, do some finagling to pretend // the superblock is an entry int err = lfs_dir_commit(lfs, &superdir, (const lfs_entry_t*)&superblock, (const struct lfs_disk_entry*)&superblock.d + 1); if (err) { LFS_ERROR("Failed to write superblock at %d", superdir.pair[0]); return err; } } // sanity check that fetch works return lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1}); } int lfs_mount(lfs_t *lfs, const struct lfs_config *config) { int err = lfs_configure(lfs, config); if (err) { return err; } lfs_dir_t dir; lfs_superblock_t superblock; err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (!err) { err = lfs_bd_read(lfs, dir.pair[0], sizeof(dir.d), sizeof(superblock.d), &superblock.d); } if (err == LFS_ERROR_CORRUPT || memcmp(superblock.d.magic, "littlefs", 8) != 0) { LFS_ERROR("Invalid superblock at %d %d", dir.pair[0], dir.pair[1]); return LFS_ERROR_CORRUPT; } if (superblock.d.version > 0x0000ffff) { LFS_ERROR("Invalid version %d.%d\n", 0xffff & (superblock.d.version >> 16), 0xffff & (superblock.d.version >> 0)); } lfs->root[0] = superblock.d.root[0]; lfs->root[1] = superblock.d.root[1]; return err; } int lfs_unmount(lfs_t *lfs) { // Do nothing for now return 0; } int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { // iterate over metadata pairs lfs_dir_t dir; lfs_file_t file; lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // iterate over contents while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) { int err = lfs_bd_read(lfs, dir.pair[0], dir.off, sizeof(file.entry.d), &file.entry.d); if (err) { return err; } dir.off += file.entry.d.len; if ((0xf & file.entry.d.type) == LFS_TYPE_REG) { if (file.entry.d.u.file.size < lfs->block_size) { int err = cb(data, file.entry.d.u.file.head); if (err) { return err; } } else { int err = lfs_index_traverse(lfs, file.entry.d.u.file.head, lfs_indexfrom(lfs, file.entry.d.u.file.size), cb, data); if (err) { return err; } } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (!cwd[0]) { return 0; } } } static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2]) { // iterate over all directory directory entries lfs_dir_t parent = { .d.tail[0] = lfs->root[0], .d.tail[1] = lfs->root[1], }; while (parent.d.tail[0]) { lfs_entry_t entry; int err = lfs_dir_fetch(lfs, &parent, parent.d.tail); if (err) { return err; } while (true) { int err = lfs_dir_next(lfs, &parent, &entry); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } if (err == LFS_ERROR_NO_ENTRY) { break; } if ((0xf & entry.d.type) == LFS_TYPE_DIR && lfs_paircmp(entry.d.u.dir, dir) == 0) { return true; } } } return false; } int lfs_deorphan(lfs_t *lfs) { // iterate over all directories lfs_dir_t pdir; lfs_dir_t cdir; // skip root int err = lfs_dir_fetch(lfs, &pdir, lfs->root); if (err) { return err; } while (pdir.d.tail[0]) { int err = lfs_dir_fetch(lfs, &cdir, pdir.d.tail); if (err) { return err; } // check if we have a parent int parent = lfs_parent(lfs, pdir.d.tail); if (parent < 0) { return parent; } if (!parent) { // we are an orphan LFS_INFO("Orphan %d %d", pdir.d.tail[0], pdir.d.tail[1]); pdir.d.tail[0] = cdir.d.tail[0]; pdir.d.tail[1] = cdir.d.tail[1]; err = lfs_dir_commit(lfs, &pdir, NULL, NULL); if (err) { return err; } break; } memcpy(&pdir, &cdir, sizeof(pdir)); } return 0; } int lfs_remove(lfs_t *lfs, const char *path) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } lfs_dir_t dir; if (entry.d.type == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)) { return LFS_ERROR_INVALID; } } // remove the entry err = lfs_dir_remove(lfs, &cwd, &entry); if (err) { return err; } // if we were a directory, just run a deorphan step, this should // collect us, although is expensive if (entry.d.type == LFS_TYPE_DIR) { int err = lfs_deorphan(lfs); if (err) { return err; } } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // find old entry lfs_dir_t oldcwd; int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root); if (err) { return err; } lfs_entry_t oldentry; err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath); if (err) { return err; } // allocate new entry lfs_dir_t newcwd; err = lfs_dir_fetch(lfs, &newcwd, lfs->root); if (err) { return err; } lfs_entry_t preventry; err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } bool prevexists = (err != LFS_ERROR_NO_ENTRY); // must have same type if (prevexists && preventry.d.type != oldentry.d.type) { return LFS_ERROR_INVALID; } lfs_dir_t dir; if (prevexists && preventry.d.type == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty int err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)) { return LFS_ERROR_INVALID; } } // move to new location lfs_entry_t newentry = preventry; newentry.d = oldentry.d; newentry.d.len = sizeof(newentry.d) + strlen(newpath); if (prevexists) { int err = lfs_dir_commit(lfs, &newcwd, &newentry, newpath); if (err) { return err; } } else { int err = lfs_dir_append(lfs, &newcwd, &newentry, newpath); if (err) { return err; } } // fetch again in case newcwd == oldcwd // TODO handle this better? err = lfs_dir_fetch(lfs, &oldcwd, oldcwd.pair); if (err) { return err; } err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath); if (err) { return err; } // remove from old location err = lfs_dir_remove(lfs, &oldcwd, &oldentry); if (err) { return err; } // if we were a directory, just run a deorphan step, this should // collect us, although is expensive if (prevexists && preventry.d.type == LFS_TYPE_DIR) { int err = lfs_deorphan(lfs); if (err) { return err; } } return 0; } int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } // TODO abstract out info assignment memset(info, 0, sizeof(*info)); info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, cwd.pair[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 0; }