/* * The little filesystem * * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lfs.h" #include "lfs_util.h" /// Caching block device operations /// static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); while (size > 0) { if (pcache && block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(data, &pcache->buffer[off-pcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (block == rcache->block && off >= rcache->off && off < rcache->off + lfs->cfg->read_size) { // is already in rcache? lfs_size_t diff = lfs_min(size, lfs->cfg->read_size - (off-rcache->off)); memcpy(data, &rcache->buffer[off-rcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, block, off, data, diff); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // load to cache, first condition can no longer fail LFS_ASSERT(block < lfs->cfg->block_count); rcache->block = block; rcache->off = off - (off % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, rcache->block, rcache->off, rcache->buffer, lfs->cfg->read_size); if (err) { return err; } } return 0; } static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } if (c != data[i]) { return false; } } return true; } static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } lfs_crc(crc, &c, 1); } return 0; } static int lfs_cache_flush(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache) { if (pcache->block != 0xffffffff) { LFS_ASSERT(pcache->block < lfs->cfg->block_count); int err = lfs->cfg->prog(lfs->cfg, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } pcache->block = 0xffffffff; } return 0; } static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); LFS_ASSERT(off + size <= lfs->cfg->block_size); while (size > 0) { if (block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(&pcache->buffer[off-pcache->off], data, diff); data += diff; off += diff; size -= diff; if (off % lfs->cfg->prog_size == 0) { // eagerly flush out pcache if we fill up int err = lfs_cache_flush(lfs, pcache, rcache); if (err) { return err; } } continue; } // pcache must have been flushed, either by programming and // entire block or manually flushing the pcache LFS_ASSERT(pcache->block == 0xffffffff); if (off % lfs->cfg->prog_size == 0 && size >= lfs->cfg->prog_size) { // bypass pcache? LFS_ASSERT(block < lfs->cfg->block_count); lfs_size_t diff = size - (size % lfs->cfg->prog_size); int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, block, off, data, diff); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } data += diff; off += diff; size -= diff; continue; } // prepare pcache, first condition can no longer fail pcache->block = block; pcache->off = off - (off % lfs->cfg->prog_size); } return 0; } /// General lfs block device operations /// static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { // if we ever do more than writes to alternating pairs, // this may need to consider pcache return lfs_cache_read(lfs, &lfs->rcache, NULL, block, off, buffer, size); } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_prog(lfs, &lfs->pcache, NULL, block, off, buffer, size); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size); } static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc); } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) { LFS_ASSERT(block < lfs->cfg->block_count); return lfs->cfg->erase(lfs->cfg, block); } static int lfs_bd_sync(lfs_t *lfs) { lfs->rcache.block = 0xffffffff; int err = lfs_cache_flush(lfs, &lfs->pcache, NULL); if (err) { return err; } return lfs->cfg->sync(lfs->cfg); } /// Internal operations predeclared here /// int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data); static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir); static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *parent, lfs_entry_t *entry); static int lfs_moved(lfs_t *lfs, const void *e); static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], const lfs_block_t newpair[2]); int lfs_deorphan(lfs_t *lfs); /// Block allocator /// static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t off = ((block - lfs->free.off) + lfs->cfg->block_count) % lfs->cfg->block_count; if (off < lfs->free.size) { lfs->free.buffer[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { while (true) { while (lfs->free.i != lfs->free.size) { lfs_block_t off = lfs->free.i; lfs->free.i += 1; lfs->free.ack -= 1; if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) { // found a free block *block = (lfs->free.off + off) % lfs->cfg->block_count; // eagerly find next off so an alloc ack can // discredit old lookahead blocks while (lfs->free.i != lfs->free.size && (lfs->free.buffer[lfs->free.i / 32] & (1U << (lfs->free.i % 32)))) { lfs->free.i += 1; lfs->free.ack -= 1; } return 0; } } // check if we have looked at all blocks since last ack if (lfs->free.ack == 0) { LFS_WARN("No more free space %d", lfs->free.i + lfs->free.off); return LFS_ERR_NOSPC; } lfs->free.off = (lfs->free.off + lfs->free.size) % lfs->cfg->block_count; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack); lfs->free.i = 0; // find mask of free blocks from tree memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } } } static void lfs_alloc_ack(lfs_t *lfs) { lfs->free.ack = lfs->cfg->block_count; } /// Endian swapping functions /// static void lfs_dir_fromle32(struct lfs_disk_dir *d) { d->rev = lfs_fromle32(d->rev); d->size = lfs_fromle32(d->size); d->tail[0] = lfs_fromle32(d->tail[0]); d->tail[1] = lfs_fromle32(d->tail[1]); } static void lfs_dir_tole32(struct lfs_disk_dir *d) { d->rev = lfs_tole32(d->rev); d->size = lfs_tole32(d->size); d->tail[0] = lfs_tole32(d->tail[0]); d->tail[1] = lfs_tole32(d->tail[1]); } static void lfs_entry_fromle32(struct lfs_disk_entry *d) { d->u.dir[0] = lfs_fromle32(d->u.dir[0]); d->u.dir[1] = lfs_fromle32(d->u.dir[1]); } static void lfs_entry_tole32(struct lfs_disk_entry *d) { d->u.dir[0] = lfs_tole32(d->u.dir[0]); d->u.dir[1] = lfs_tole32(d->u.dir[1]); } static void lfs_superblock_fromle32(struct lfs_disk_superblock *d) { d->root[0] = lfs_fromle32(d->root[0]); d->root[1] = lfs_fromle32(d->root[1]); d->block_size = lfs_fromle32(d->block_size); d->block_count = lfs_fromle32(d->block_count); d->version = lfs_fromle32(d->version); d->inline_size = lfs_fromle32(d->inline_size); d->attrs_size = lfs_fromle32(d->attrs_size); d->name_size = lfs_fromle32(d->name_size); } static void lfs_superblock_tole32(struct lfs_disk_superblock *d) { d->root[0] = lfs_tole32(d->root[0]); d->root[1] = lfs_tole32(d->root[1]); d->block_size = lfs_tole32(d->block_size); d->block_count = lfs_tole32(d->block_count); d->version = lfs_tole32(d->version); d->inline_size = lfs_tole32(d->inline_size); d->attrs_size = lfs_tole32(d->attrs_size); d->name_size = lfs_tole32(d->name_size); } /// Other struct functions /// static inline lfs_size_t lfs_entry_elen(const lfs_entry_t *entry) { return (lfs_size_t)(entry->d.elen) | ((lfs_size_t)(entry->d.alen & 0xc0) << 2); } static inline lfs_size_t lfs_entry_alen(const lfs_entry_t *entry) { return entry->d.alen & 0x3f; } static inline lfs_size_t lfs_entry_nlen(const lfs_entry_t *entry) { return entry->d.nlen; } static inline lfs_size_t lfs_entry_size(const lfs_entry_t *entry) { return 4 + lfs_entry_elen(entry) + lfs_entry_alen(entry) + lfs_entry_nlen(entry); } /// Metadata pair and directory operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pairisnull(const lfs_block_t pair[2]) { return pair[0] == 0xffffffff || pair[1] == 0xffffffff; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !(paira[0] == pairb[0] || paira[1] == pairb[1] || paira[0] == pairb[1] || paira[1] == pairb[0]); } static inline bool lfs_pairsync( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return (paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0]); } static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) { // allocate pair of dir blocks for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[i]); if (err) { return err; } } // rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->d.rev, 4); dir->d.rev = lfs_fromle32(dir->d.rev); if (err) { return err; } // set defaults dir->d.rev += 1; dir->d.size = sizeof(dir->d)+4; dir->d.tail[0] = 0xffffffff; dir->d.tail[1] = 0xffffffff; dir->off = sizeof(dir->d); // don't write out yet, let caller take care of that return 0; } static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, const lfs_block_t pair[2]) { // copy out pair, otherwise may be aliasing dir const lfs_block_t tpair[2] = {pair[0], pair[1]}; bool valid = false; // check both blocks for the most recent revision for (int i = 0; i < 2; i++) { struct lfs_disk_dir test; int err = lfs_bd_read(lfs, tpair[i], 0, &test, sizeof(test)); lfs_dir_fromle32(&test); if (err) { return err; } if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) { continue; } if ((0x7fffffff & test.size) < sizeof(test)+4 || (0x7fffffff & test.size) > lfs->cfg->block_size) { continue; } uint32_t crc = 0xffffffff; lfs_dir_tole32(&test); lfs_crc(&crc, &test, sizeof(test)); lfs_dir_fromle32(&test); err = lfs_bd_crc(lfs, tpair[i], sizeof(test), (0x7fffffff & test.size) - sizeof(test), &crc); if (err) { return err; } if (crc != 0) { continue; } valid = true; // setup dir in case it's valid dir->pair[0] = tpair[(i+0) % 2]; dir->pair[1] = tpair[(i+1) % 2]; dir->off = sizeof(dir->d); dir->d = test; } if (!valid) { LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]); return LFS_ERR_CORRUPT; } return 0; } struct lfs_region { enum { LFS_FROM_MEM, LFS_FROM_REGION, LFS_FROM_ATTRS, } type; lfs_off_t oldoff; lfs_size_t oldsize; const void *buffer; lfs_size_t newsize; }; struct lfs_region_attrs { const struct lfs_attr *attrs; int count; }; struct lfs_region_region { lfs_block_t block; lfs_off_t off; struct lfs_region *regions; int count; }; static int lfs_commit_region(lfs_t *lfs, uint32_t *crc, lfs_block_t oldblock, lfs_off_t oldoff, lfs_block_t newblock, lfs_off_t newoff, lfs_off_t regionoff, lfs_size_t regionsize, const struct lfs_region *regions, int count) { int i = 0; lfs_size_t newend = newoff + regionsize; while (newoff < newend) { // commit from different types of regions if (i < count && regions[i].oldoff == oldoff - regionoff) { switch (regions[i].type) { case LFS_FROM_MEM: { lfs_crc(crc, regions[i].buffer, regions[i].newsize); int err = lfs_bd_prog(lfs, newblock, newoff, regions[i].buffer, regions[i].newsize); if (err) { return err; } newoff += regions[i].newsize; oldoff += regions[i].oldsize; break; } case LFS_FROM_REGION: { const struct lfs_region_region *disk = regions[i].buffer; int err = lfs_commit_region(lfs, crc, disk->block, disk->off, newblock, newoff, disk->off, regions[i].newsize, disk->regions, disk->count); if (err) { return err; } newoff += regions[i].newsize; oldoff -= regions[i].oldsize; break; } case LFS_FROM_ATTRS: { const struct lfs_region_attrs *attrs = regions[i].buffer; // order doesn't matter, so we write new attrs first. this // is still O(n^2) but only O(n) disk access for (int j = 0; j < attrs->count; j++) { if (attrs->attrs[j].size == 0) { continue; } lfs_entry_attr_t attr; attr.d.type = attrs->attrs[j].type; attr.d.len = attrs->attrs[j].size; lfs_crc(crc, &attr.d, sizeof(attr.d)); int err = lfs_bd_prog(lfs, newblock, newoff, &attr.d, sizeof(attr.d)); if (err) { return err; } lfs_crc(crc, attrs->attrs[j].buffer, attrs->attrs[j].size); err = lfs_bd_prog(lfs, newblock, newoff+sizeof(attr.d), attrs->attrs[j].buffer, attrs->attrs[j].size); if (err) { return err; } newoff += 2+attrs->attrs[j].size; } // copy over attributes without updates lfs_off_t oldend = oldoff + regions[i].oldsize; while (oldoff < oldend) { lfs_entry_attr_t attr; int err = lfs_bd_read(lfs, oldblock, oldoff, &attr.d, sizeof(attr.d)); if (err) { return err; } bool updating = false; for (int j = 0; j < attrs->count; j++) { if (attr.d.type == attrs->attrs[j].type) { updating = true; } } if (!updating) { err = lfs_commit_region(lfs, crc, oldblock, oldoff, newblock, newoff, 0, 2+attr.d.len, NULL, 0); if (err) { return err; } newoff += 2+attr.d.len; } oldoff += 2+attr.d.len; } break; } } i += 1; } else { // copy data from old block if not covered by region uint8_t data; int err = lfs_bd_read(lfs, oldblock, oldoff, &data, 1); if (err) { return err; } lfs_crc(crc, &data, 1); err = lfs_bd_prog(lfs, newblock, newoff, &data, 1); if (err) { return err; } oldoff += 1; newoff += 1; } } // sanity check our commit math LFS_ASSERT(newoff == newend); return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir, const struct lfs_region *regions, int count) { // state for copying over const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]}; bool relocated = false; // increment revision count dir->d.rev += 1; // keep pairs in order such that pair[0] is most recent lfs_pairswap(dir->pair); for (int i = 0; i < count; i++) { dir->d.size += regions[i].newsize; dir->d.size -= regions[i].oldsize; } while (true) { if (true) { int err = lfs_bd_erase(lfs, dir->pair[0]); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // commit header uint32_t crc = 0xffffffff; lfs_dir_tole32(&dir->d); lfs_crc(&crc, &dir->d, sizeof(dir->d)); err = lfs_bd_prog(lfs, dir->pair[0], 0, &dir->d, sizeof(dir->d)); lfs_dir_fromle32(&dir->d); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // commit region err = lfs_commit_region(lfs, &crc, dir->pair[1], sizeof(dir->d), dir->pair[0], sizeof(dir->d), 0, (0x7fffffff & dir->d.size)-sizeof(dir->d)-4, regions, count); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // commit crc crc = lfs_tole32(crc); err = lfs_bd_prog(lfs, dir->pair[0], (0x7fffffff & dir->d.size)-4, &crc, 4); crc = lfs_fromle32(crc); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } err = lfs_bd_sync(lfs); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // successful commit, check checksum to make sure uint32_t ncrc = 0xffffffff; err = lfs_bd_crc(lfs, dir->pair[0], 0, (0x7fffffff & dir->d.size)-4, &ncrc); if (err) { return err; } if (ncrc != crc) { goto relocate; } } break; relocate: //commit was corrupted LFS_DEBUG("Bad block at %d", dir->pair[0]); // drop caches and prepare to relocate block relocated = true; lfs->pcache.block = 0xffffffff; // can't relocate superblock, filesystem is now frozen if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) { LFS_WARN("Superblock %d has become unwritable", oldpair[0]); return LFS_ERR_CORRUPT; } // relocate half of pair int err = lfs_alloc(lfs, &dir->pair[0]); if (err) { return err; } } if (relocated) { // update references if we relocated LFS_DEBUG("Relocating %d %d to %d %d", oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]); int err = lfs_relocate(lfs, oldpair, dir->pair); if (err) { return err; } } // shift over any directories that are affected for (lfs_dir_t *d = lfs->dirs; d; d = d->next) { if (lfs_paircmp(d->pair, dir->pair) == 0) { d->pair[0] = dir->pair[0]; d->pair[1] = dir->pair[1]; } } return 0; } static int lfs_dir_get(lfs_t *lfs, const lfs_dir_t *dir, lfs_off_t off, void *buffer, lfs_size_t size) { return lfs_bd_read(lfs, dir->pair[0], off, buffer, size); } static int lfs_dir_set(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, struct lfs_region *regions, int count) { lfs_ssize_t diff = 0; for (int i = 0; i < count; i++) { diff += regions[i].newsize; diff -= regions[i].oldsize; } lfs_size_t oldsize = entry->size; if (entry->off == 0) { entry->off = (0x7fffffff & dir->d.size) - 4; } if ((0x7fffffff & dir->d.size) + diff > lfs->cfg->block_size) { lfs_dir_t olddir = *dir; lfs_off_t oldoff = entry->off; if (oldsize) { // mark as moving uint8_t type; int err = lfs_dir_get(lfs, &olddir, oldoff, &type, 1); if (err) { return err; } type |= LFS_STRUCT_MOVED; err = lfs_dir_commit(lfs, &olddir, (struct lfs_region[]){ {LFS_FROM_MEM, oldoff, 1, &type, 1}}, 1); if (err) { return err; } } lfs_dir_t pdir = olddir; // find available block or create a new one while ((0x7fffffff & dir->d.size) + oldsize + diff > lfs->cfg->block_size) { // we need to allocate a new dir block if (!(0x80000000 & dir->d.size)) { pdir = *dir; int err = lfs_dir_alloc(lfs, dir); if (err) { return err; } dir->d.tail[0] = pdir.d.tail[0]; dir->d.tail[1] = pdir.d.tail[1]; break; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } } // writing out new entry entry->off = dir->d.size - 4; entry->size += diff; int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){ {LFS_FROM_REGION, entry->off, 0, &(struct lfs_region_region){ olddir.pair[0], oldoff, regions, count}, entry->size}}, 1); if (err) { return err; } // update pred dir, unless pred == old we can coalesce if (!oldsize || lfs_paircmp(pdir.pair, olddir.pair) != 0) { pdir.d.size |= 0x80000000; pdir.d.tail[0] = dir->pair[0]; pdir.d.tail[1] = dir->pair[1]; err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } } else if (oldsize) { olddir.d.size |= 0x80000000; olddir.d.tail[0] = dir->pair[0]; olddir.d.tail[1] = dir->pair[1]; } // remove old entry if (oldsize) { lfs_entry_t oldentry; oldentry.off = oldoff; err = lfs_dir_set(lfs, &olddir, &oldentry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, oldsize, NULL, 0}}, 1); if (err) { return err; } } goto shift; } if ((0x7fffffff & dir->d.size) + diff == sizeof(dir->d)+4) { lfs_dir_t pdir; int res = lfs_pred(lfs, dir->pair, &pdir); if (res < 0) { return res; } if (pdir.d.size & 0x80000000) { pdir.d.size &= dir->d.size | 0x7fffffff; pdir.d.tail[0] = dir->d.tail[0]; pdir.d.tail[1] = dir->d.tail[1]; int err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } goto shift; } } for (int i = 0; i < count; i++) { regions[i].oldoff += entry->off; } int err = lfs_dir_commit(lfs, dir, regions, count); if (err) { return err; } entry->size += diff; shift: // shift over any files/directories that are affected for (lfs_file_t *f = lfs->files; f; f = f->next) { if (lfs_paircmp(f->pair, dir->pair) == 0) { if (f->pairoff == entry->off && entry->size == 0) { f->pair[0] = 0xffffffff; f->pair[1] = 0xffffffff; } else if (f->pairoff > entry->off) { f->pairoff += diff; } } } for (lfs_dir_t *d = lfs->dirs; d; d = d->next) { if (lfs_paircmp(d->pair, dir->pair) == 0) { if (d->off > entry->off) { d->off += diff; d->pos += diff; } } } return 0; } static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { while (dir->off >= (0x7fffffff & dir->d.size)-4) { if (!(0x80000000 & dir->d.size)) { entry->off = dir->off; return LFS_ERR_NOENT; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } dir->off = sizeof(dir->d); dir->pos += sizeof(dir->d) + 4; } int err = lfs_dir_get(lfs, dir, dir->off, &entry->d, sizeof(entry->d)); lfs_entry_fromle32(&entry->d); if (err) { return err; } entry->off = dir->off; entry->size = lfs_entry_size(entry); dir->off += entry->size; dir->pos += entry->size; return 0; } static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const char **path) { const char *pathname = *path; lfs_size_t pathlen; while (true) { nextname: // skip slashes pathname += strspn(pathname, "/"); pathlen = strcspn(pathname, "/"); // special case for root dir if (pathname[0] == '\0') { *entry = (lfs_entry_t){ .d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR, .d.u.dir[0] = lfs->root[0], .d.u.dir[1] = lfs->root[1], }; return 0; } // skip '.' and root '..' if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) || (pathlen == 2 && memcmp(pathname, "..", 2) == 0)) { pathname += pathlen; goto nextname; } // skip if matched by '..' in name const char *suffix = pathname + pathlen; lfs_size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { pathname = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // update what we've found *path = pathname; // find path while (true) { int err = lfs_dir_next(lfs, dir, entry); if (err) { return err; } if (((0xf & entry->d.type) != LFS_TYPE_REG && (0xf & entry->d.type) != LFS_TYPE_DIR) || entry->d.nlen != pathlen) { continue; } int res = lfs_bd_cmp(lfs, dir->pair[0], entry->off + entry->size - pathlen, pathname, pathlen); if (res < 0) { return res; } // found match if (res) { break; } } // check that entry has not been moved if (entry->d.type & LFS_STRUCT_MOVED) { int moved = lfs_moved(lfs, &entry->d.u); if (moved < 0 || moved) { return (moved < 0) ? moved : LFS_ERR_NOENT; } entry->d.type &= ~LFS_STRUCT_MOVED; } pathname += pathlen; pathname += strspn(pathname, "/"); if (pathname[0] == '\0') { return 0; } // continue on if we hit a directory if ((0xf & entry->d.type) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir); if (err) { return err; } } } /// Internal attribute operations /// static int lfs_dir_getinfo(lfs_t *lfs, lfs_dir_t *dir, const lfs_entry_t *entry, struct lfs_info *info) { memset(info, 0, sizeof(*info)); info->type = 0xf & entry->d.type; if (entry->d.type == (LFS_STRUCT_CTZ | LFS_TYPE_REG)) { info->size = entry->d.u.file.size; } else if (entry->d.type == (LFS_STRUCT_INLINE | LFS_TYPE_REG)) { info->size = lfs_entry_elen(entry); } if (lfs_paircmp(entry->d.u.dir, lfs->root) == 0) { strcpy(info->name, "/"); } else { int err = lfs_dir_get(lfs, dir, entry->off + entry->size - entry->d.nlen, info->name, entry->d.nlen); if (err) { return err; } } return 0; } static int lfs_dir_getattrs(lfs_t *lfs, lfs_dir_t *dir, const lfs_entry_t *entry, const struct lfs_attr *attrs, int count) { // set to zero in case we can't find the attributes or size mismatch for (int j = 0; j < count; j++) { memset(attrs[j].buffer, 0, attrs[j].size); } // search for attribute in attribute region lfs_off_t off = entry->off + 4+lfs_entry_elen(entry); lfs_off_t end = off + lfs_entry_alen(entry); while (off < end) { lfs_entry_attr_t attr; int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d)); if (err) { return err; } for (int j = 0; j < count; j++) { if (attrs[j].type == attr.d.type) { if (attrs[j].size < attr.d.len) { return LFS_ERR_RANGE; } err = lfs_dir_get(lfs, dir, off+sizeof(attr.d), attrs[j].buffer, attr.d.len); if (err) { return err; } } } off += 2+attr.d.len; } return 0; } static lfs_ssize_t lfs_dir_checkattrs(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const struct lfs_attr *attrs, int count) { // check that attributes fit // two separate passes so disk access is O(n) lfs_size_t nsize = 0; for (int j = 0; j < count; j++) { if (attrs[j].size > 0) { nsize += 2+attrs[j].size; } } lfs_off_t off = entry->off + 4+lfs_entry_elen(entry); lfs_off_t end = off + lfs_entry_alen(entry); while (off < end) { lfs_entry_attr_t attr; int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d)); if (err) { return err; } bool updated = false; for (int j = 0; j < count; j++) { if (attr.d.type == attrs[j].type) { updated = true; } } if (!updated) { nsize += 2+attr.d.len; } off += 2+attr.d.len; } if (nsize > lfs->attrs_size || ( lfs_entry_size(entry) - lfs_entry_alen(entry) + nsize > lfs->cfg->block_size)) { return LFS_ERR_NOSPC; } return nsize; } static int lfs_dir_setattrs(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const struct lfs_attr *attrs, int count) { // make sure attributes fit lfs_size_t oldlen = lfs_entry_alen(entry); lfs_ssize_t newlen = lfs_dir_checkattrs(lfs, dir, entry, attrs, count); if (newlen < 0) { return newlen; } // commit to entry, majority of work is in LFS_FROM_ATTRS entry->d.alen = (0xc0 & entry->d.alen) | newlen; return lfs_dir_set(lfs, dir, entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 4, &entry->d, 4}, {LFS_FROM_ATTRS, 4+lfs_entry_elen(entry), oldlen, &(struct lfs_region_attrs){attrs, count}, newlen}}, 2); } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } // fetch parent directory lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) { return err ? err : LFS_ERR_EXIST; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // build up new directory lfs_alloc_ack(lfs); lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir); if (err) { return err; } dir.d.tail[0] = cwd.d.tail[0]; dir.d.tail[1] = cwd.d.tail[1]; err = lfs_dir_commit(lfs, &dir, NULL, 0); if (err) { return err; } entry.d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR; entry.d.elen = sizeof(entry.d) - 4; entry.d.alen = 0; entry.d.nlen = nlen; entry.d.u.dir[0] = dir.pair[0]; entry.d.u.dir[1] = dir.pair[1]; entry.size = 0; cwd.d.tail[0] = dir.pair[0]; cwd.d.tail[1] = dir.pair[1]; err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 0, &entry.d, sizeof(entry.d)}, {LFS_FROM_MEM, 0, 0, path, nlen}}, 2); if (err) { return err; } lfs_alloc_ack(lfs); return 0; } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { dir->pair[0] = lfs->root[0]; dir->pair[1] = lfs->root[1]; int err = lfs_dir_fetch(lfs, dir, dir->pair); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, dir, &entry, &path); if (err) { return err; } else if (entry.d.type != (LFS_STRUCT_DIR | LFS_TYPE_DIR)) { return LFS_ERR_NOTDIR; } err = lfs_dir_fetch(lfs, dir, entry.d.u.dir); if (err) { return err; } // setup head dir // special offset for '.' and '..' dir->head[0] = dir->pair[0]; dir->head[1] = dir->pair[1]; dir->pos = sizeof(dir->d) - 2; dir->off = sizeof(dir->d); // add to list of directories dir->next = lfs->dirs; lfs->dirs = dir; return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // remove from list of directories for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) { if (*p == dir) { *p = dir->next; break; } } return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); // special offset for '.' and '..' if (dir->pos == sizeof(dir->d) - 2) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->pos += 1; return 1; } else if (dir->pos == sizeof(dir->d) - 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->pos += 1; return 1; } lfs_entry_t entry; while (true) { int err = lfs_dir_next(lfs, dir, &entry); if (err) { return (err == LFS_ERR_NOENT) ? 0 : err; } if ((0xf & entry.d.type) != LFS_TYPE_REG && (0xf & entry.d.type) != LFS_TYPE_DIR) { continue; } // check that entry has not been moved if (entry.d.type & LFS_STRUCT_MOVED) { int moved = lfs_moved(lfs, &entry.d.u); if (moved < 0) { return moved; } if (moved) { continue; } entry.d.type &= ~LFS_STRUCT_MOVED; } break; } int err = lfs_dir_getinfo(lfs, dir, &entry, info); if (err) { return err; } return 1; } int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) { // simply walk from head dir int err = lfs_dir_rewind(lfs, dir); if (err) { return err; } dir->pos = off; while (off > (0x7fffffff & dir->d.size)) { off -= 0x7fffffff & dir->d.size; if (!(0x80000000 & dir->d.size)) { return LFS_ERR_INVAL; } err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } } dir->off = off; return 0; } lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) { (void)lfs; return dir->pos; } int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) { // reload the head dir int err = lfs_dir_fetch(lfs, dir, dir->head); if (err) { return err; } dir->pair[0] = dir->head[0]; dir->pair[1] = dir->head[1]; dir->pos = sizeof(dir->d) - 2; dir->off = sizeof(dir->d); return 0; } /// File index list operations /// static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) { lfs_off_t size = *off; lfs_off_t b = lfs->cfg->block_size - 2*4; lfs_off_t i = size / b; if (i == 0) { return 0; } i = (size - 4*(lfs_popc(i-1)+2)) / b; *off = size - b*i - 4*lfs_popc(i); return i; } static int lfs_ctz_find(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) { if (size == 0) { *block = 0xffffffff; *off = 0; return 0; } lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); lfs_off_t target = lfs_ctz_index(lfs, &pos); while (current > target) { lfs_size_t skip = lfs_min( lfs_npw2(current-target+1) - 1, lfs_ctz(current)); int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4); head = lfs_fromle32(head); if (err) { return err; } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); current -= 1 << skip; } *block = head; *off = pos; return 0; } static int lfs_ctz_extend(lfs_t *lfs, lfs_cache_t *rcache, lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_block_t *block, lfs_off_t *off) { while (true) { // go ahead and grab a block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count); if (true) { err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (size == 0) { *block = nblock; *off = 0; return 0; } size -= 1; lfs_off_t index = lfs_ctz_index(lfs, &size); size += 1; // just copy out the last block if it is incomplete if (size != lfs->cfg->block_size) { for (lfs_off_t i = 0; i < size; i++) { uint8_t data; err = lfs_cache_read(lfs, rcache, NULL, head, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, pcache, rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } *block = nblock; *off = size; return 0; } // append block index += 1; lfs_size_t skips = lfs_ctz(index) + 1; for (lfs_off_t i = 0; i < skips; i++) { head = lfs_tole32(head); err = lfs_cache_prog(lfs, pcache, rcache, nblock, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (i != skips-1) { err = lfs_cache_read(lfs, rcache, NULL, head, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { return err; } } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); } *block = nblock; *off = 4*skips; return 0; } relocate: LFS_DEBUG("Bad block at %d", nblock); // just clear cache and try a new block pcache->block = 0xffffffff; } } static int lfs_ctz_traverse(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, int (*cb)(void*, lfs_block_t), void *data) { if (size == 0) { return 0; } lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); while (true) { int err = cb(data, head); if (err) { return err; } if (index == 0) { return 0; } lfs_block_t heads[2]; int count = 2 - (index & 1); err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4); heads[0] = lfs_fromle32(heads[0]); heads[1] = lfs_fromle32(heads[1]); if (err) { return err; } for (int i = 0; i < count-1; i++) { err = cb(data, heads[i]); if (err) { return err; } } head = heads[count-1]; index -= count; } } /// Top level file operations /// int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { // deorphan if we haven't yet, needed at most once after poweron if ((flags & 3) != LFS_O_RDONLY && !lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } // allocate entry for file if it doesn't exist lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err && (err != LFS_ERR_NOENT || strchr(path, '/') != NULL)) { return err; } if (err == LFS_ERR_NOENT) { if (!(flags & LFS_O_CREAT)) { return LFS_ERR_NOENT; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // create entry to remember name entry.d.type = LFS_STRUCT_INLINE | LFS_TYPE_REG; entry.d.elen = 0; entry.d.alen = 0; entry.d.nlen = nlen; entry.size = 0; err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 0, &entry.d, 4}, {LFS_FROM_MEM, 0, 0, path, nlen}}, 2); if (err) { return err; } } else if ((0xf & entry.d.type) == LFS_TYPE_DIR) { return LFS_ERR_ISDIR; } else if (flags & LFS_O_EXCL) { return LFS_ERR_EXIST; } // allocate buffer if needed file->cache.block = 0xffffffff; if (lfs->cfg->file_buffer) { file->cache.buffer = lfs->cfg->file_buffer; } else if ((file->flags & 3) == LFS_O_RDONLY) { file->cache.buffer = lfs_malloc(lfs->cfg->read_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } else { file->cache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } // setup file struct file->pair[0] = cwd.pair[0]; file->pair[1] = cwd.pair[1]; file->pairoff = entry.off; file->flags = flags; file->pos = 0; // calculate max inline size based on the size of the entry file->inline_size = lfs_min(lfs->inline_size, lfs->cfg->block_size - (sizeof(cwd.d)+4) - (lfs_entry_size(&entry) - lfs_entry_elen(&entry))); if ((0x70 & entry.d.type) == LFS_STRUCT_INLINE) { // load inline files file->head = 0xfffffffe; file->size = lfs_entry_elen(&entry); file->flags |= LFS_F_INLINE; file->cache.block = file->head; file->cache.off = 0; err = lfs_dir_get(lfs, &cwd, entry.off + 4, file->cache.buffer, file->size); if (err) { lfs_free(file->cache.buffer); return err; } } else { // use ctz list from entry file->head = entry.d.u.file.head; file->size = entry.d.u.file.size; } // truncate if requested if (flags & LFS_O_TRUNC) { if (file->size != 0) { file->flags |= LFS_F_DIRTY; } file->head = 0xfffffffe; file->size = 0; file->flags |= LFS_F_INLINE; file->cache.block = file->head; file->cache.off = 0; } // add to list of files file->next = lfs->files; lfs->files = file; return 0; } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_sync(lfs, file); // remove from list of files for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) { if (*p == file) { *p = file->next; break; } } // clean up memory if (!lfs->cfg->file_buffer) { lfs_free(file->cache.buffer); } return err; } static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) { relocate:; // just relocate what exists into new block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // either read from dirty cache or disk for (lfs_off_t i = 0; i < file->off; i++) { uint8_t data; err = lfs_cache_read(lfs, &lfs->rcache, &file->cache, file->block, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } // copy over new state of file memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size); file->cache.block = lfs->pcache.block; file->cache.off = lfs->pcache.off; lfs->pcache.block = 0xffffffff; file->block = nblock; return 0; } static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) { if (file->flags & LFS_F_READING) { file->flags &= ~LFS_F_READING; } if (file->flags & LFS_F_WRITING) { lfs_off_t pos = file->pos; if (!(file->flags & LFS_F_INLINE)) { // copy over anything after current branch lfs_file_t orig = { .head = file->head, .size = file->size, .flags = LFS_O_RDONLY, .pos = file->pos, .cache = lfs->rcache, }; lfs->rcache.block = 0xffffffff; while (file->pos < file->size) { // copy over a byte at a time, leave it up to caching // to make this efficient uint8_t data; lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1); if (res < 0) { return res; } res = lfs_file_write(lfs, file, &data, 1); if (res < 0) { return res; } // keep our reference to the rcache in sync if (lfs->rcache.block != 0xffffffff) { orig.cache.block = 0xffffffff; lfs->rcache.block = 0xffffffff; } } // write out what we have while (true) { int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } break; relocate: LFS_DEBUG("Bad block at %d", file->block); err = lfs_file_relocate(lfs, file); if (err) { return err; } } } else { file->size = lfs_max(file->pos, file->size); } // actual file updates file->head = file->block; file->size = file->pos; file->flags &= ~LFS_F_WRITING; file->flags |= LFS_F_DIRTY; file->pos = pos; } return 0; } int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_flush(lfs, file); if (err) { return err; } if ((file->flags & LFS_F_DIRTY) && !(file->flags & LFS_F_ERRED) && !lfs_pairisnull(file->pair)) { // update dir entry lfs_dir_t cwd; err = lfs_dir_fetch(lfs, &cwd, file->pair); if (err) { return err; } lfs_entry_t entry = {.off = file->pairoff}; err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, sizeof(entry.d)); lfs_entry_fromle32(&entry.d); if (err) { return err; } entry.size = lfs_entry_size(&entry); LFS_ASSERT((0xf & entry.d.type) == LFS_TYPE_REG); lfs_size_t oldelen = lfs_entry_elen(&entry); lfs_size_t oldalen = lfs_entry_alen(&entry); const void *buffer; lfs_size_t size; // either update the references or inline the whole file if (!(file->flags & LFS_F_INLINE)) { entry.d.type = LFS_STRUCT_CTZ | LFS_TYPE_REG; entry.d.u.file.head = file->head; entry.d.u.file.size = file->size; buffer = (const uint8_t *)&entry.d + 4; size = sizeof(entry.d) - 4; } else { entry.d.type = LFS_STRUCT_INLINE | LFS_TYPE_REG; buffer = file->cache.buffer; size = file->size; } // get new alen from disk lfs_ssize_t newalen = lfs_dir_checkattrs(lfs, &cwd, &entry, file->attrs, file->attrcount); if (newalen < 0) { return newalen; } entry.d.elen = size & 0xff; entry.d.alen = (newalen & 0x3f) | ((size >> 2) & 0xc0); // write out update err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 4, &entry.d, 4}, {LFS_FROM_MEM, 4, oldelen, buffer, size}, {LFS_FROM_ATTRS, 4+oldelen, oldalen, &(struct lfs_region_attrs){file->attrs, file->attrcount}, newalen}}, 3); if (err) { return err; } file->flags &= ~LFS_F_DIRTY; } return 0; } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_WRONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_WRITING) { // flush out any writes int err = lfs_file_flush(lfs, file); if (err) { return err; } } if (file->pos >= file->size) { // eof if past end return 0; } size = lfs_min(size, file->size - file->pos); nsize = size; while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_READING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { int err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, file->pos, &file->block, &file->off); if (err) { return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_READING; } // read as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); int err = lfs_cache_read(lfs, &file->cache, NULL, file->block, file->off, data, diff); if (err) { return err; } file->pos += diff; file->off += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_READING) { // drop any reads int err = lfs_file_flush(lfs, file); if (err) { return err; } } if ((file->flags & LFS_O_APPEND) && file->pos < file->size) { file->pos = file->size; } if (!(file->flags & LFS_F_WRITING) && file->pos > file->size) { // fill with zeros lfs_off_t pos = file->pos; file->pos = file->size; while (file->pos < pos) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } } if ((file->flags & LFS_F_INLINE) && file->pos + nsize >= file->inline_size) { // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); int err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_WRITING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { if (!(file->flags & LFS_F_WRITING) && file->pos > 0) { // find out which block we're extending from int err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, file->pos-1, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } // mark cache as dirty since we may have read data into it file->cache.block = 0xffffffff; } // extend file with new blocks lfs_alloc_ack(lfs); int err = lfs_ctz_extend(lfs, &lfs->rcache, &file->cache, file->block, file->pos, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_WRITING; } // program as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); while (true) { int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache, file->block, file->off, data, diff); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } file->flags |= LFS_F_ERRED; return err; } break; relocate: err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } } file->pos += diff; file->off += diff; data += diff; nsize -= diff; lfs_alloc_ack(lfs); } file->flags &= ~LFS_F_ERRED; return size; } lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file, lfs_soff_t off, int whence) { // write out everything beforehand, may be noop if rdonly int err = lfs_file_flush(lfs, file); if (err) { return err; } // update pos if (whence == LFS_SEEK_SET) { file->pos = off; } else if (whence == LFS_SEEK_CUR) { if (off < 0 && (lfs_off_t)-off > file->pos) { return LFS_ERR_INVAL; } file->pos = file->pos + off; } else if (whence == LFS_SEEK_END) { if (off < 0 && (lfs_off_t)-off > file->size) { return LFS_ERR_INVAL; } file->pos = file->size + off; } return file->pos; } int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) { if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } lfs_off_t oldsize = lfs_file_size(lfs, file); if (size < oldsize) { // need to flush since directly changing metadata int err = lfs_file_flush(lfs, file); if (err) { return err; } // lookup new head in ctz skip list err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, size, &file->head, &(lfs_off_t){0}); if (err) { return err; } file->size = size; file->flags |= LFS_F_DIRTY; } else if (size > oldsize) { lfs_off_t pos = file->pos; // flush+seek if not already at end if (file->pos != oldsize) { int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END); if (err < 0) { return err; } } // fill with zeros while (file->pos < size) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } // restore pos int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET); if (err < 0) { return err; } } return 0; } lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) { (void)lfs; return file->pos; } int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) { lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET); if (res < 0) { return res; } return 0; } lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) { (void)lfs; if (file->flags & LFS_F_WRITING) { return lfs_max(file->pos, file->size); } else { return file->size; } } int lfs_file_getattrs(lfs_t *lfs, lfs_file_t *file, const struct lfs_attr *attrs, int count) { // set to null in case we can't find the attrs (missing file?) for (int j = 0; j < count; j++) { memset(attrs[j].buffer, 0, attrs[j].size); } // load from disk if we haven't already been deleted if (!lfs_pairisnull(file->pair)) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, file->pair); if (err) { return err; } lfs_entry_t entry = {.off = file->pairoff}; err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, sizeof(entry.d)); if (err) { return err; } entry.size = lfs_entry_size(&entry); err = lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); if (err) { return err; } } // override an attrs we have stored locally for (int i = 0; i < file->attrcount; i++) { for (int j = 0; j < count; j++) { if (attrs[j].type == file->attrs[i].type) { if (attrs[j].size < file->attrs[i].size) { return LFS_ERR_RANGE; } memcpy(attrs[j].buffer, file->attrs[i].buffer, file->attrs[i].size); } } } return 0; } int lfs_file_setattrs(lfs_t *lfs, lfs_file_t *file, const struct lfs_attr *attrs, int count) { // just tack to the file, will be written at sync time file->attrs = attrs; file->attrcount = count; // at least make sure attributes fit if (!lfs_pairisnull(file->pair)) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, file->pair); if (err) { return err; } lfs_entry_t entry = {.off = file->pairoff}; err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, sizeof(entry.d)); if (err) { return err; } entry.size = lfs_entry_size(&entry); lfs_ssize_t res = lfs_dir_checkattrs(lfs, &cwd, &entry, attrs, count); if (res < 0) { return res; } } return 0; } /// General fs operations /// int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } return lfs_dir_getinfo(lfs, &cwd, &entry, info); } int lfs_remove(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } lfs_dir_t dir; if ((0xf & entry.d.type) == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)+4) { return LFS_ERR_NOTEMPTY; } } // remove the entry err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1); if (err) { return err; } // if we were a directory, find pred, replace tail if ((0xf & entry.d.type) == LFS_TYPE_DIR) { int res = lfs_pred(lfs, dir.pair, &cwd); if (res < 0) { return res; } LFS_ASSERT(res); // must have pred cwd.d.tail[0] = dir.d.tail[0]; cwd.d.tail[1] = dir.d.tail[1]; err = lfs_dir_commit(lfs, &cwd, NULL, 0); if (err) { return err; } } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } // find old entry lfs_dir_t oldcwd; int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root); if (err) { return err; } lfs_entry_t oldentry; err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath); if (err) { return err; } // allocate new entry lfs_dir_t newcwd; err = lfs_dir_fetch(lfs, &newcwd, lfs->root); if (err) { return err; } lfs_entry_t preventry; err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath); if (err && (err != LFS_ERR_NOENT || strchr(newpath, '/') != NULL)) { return err; } bool prevexists = (err != LFS_ERR_NOENT); bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0); // check that name fits lfs_size_t nlen = strlen(newpath); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // must have same type if (prevexists && preventry.d.type != oldentry.d.type) { return LFS_ERR_ISDIR; } lfs_dir_t dir; if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)+4) { return LFS_ERR_NOTEMPTY; } } // mark as moving oldentry.d.type |= LFS_STRUCT_MOVED; err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 1, &oldentry.d.type, 1}}, 1); oldentry.d.type &= ~LFS_STRUCT_MOVED; if (err) { return err; } // update pair if newcwd == oldcwd if (samepair) { newcwd = oldcwd; } // move to new location lfs_entry_t newentry = preventry; newentry.d = oldentry.d; newentry.d.type &= ~LFS_STRUCT_MOVED; newentry.d.nlen = nlen; newentry.size = prevexists ? preventry.size : 0; lfs_size_t newsize = oldentry.size - oldentry.d.nlen + newentry.d.nlen; err = lfs_dir_set(lfs, &newcwd, &newentry, (struct lfs_region[]){ {LFS_FROM_REGION, 0, prevexists ? preventry.size : 0, &(struct lfs_region_region){ oldcwd.pair[0], oldentry.off, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 4, &newentry.d, 4}, {LFS_FROM_MEM, newsize-nlen, 0, newpath, nlen}}, 2}, newsize}}, 1); if (err) { return err; } // update pair if newcwd == oldcwd if (samepair) { oldcwd = newcwd; } // remove old entry err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, oldentry.size, NULL, 0}}, 1); if (err) { return err; } // if we were a directory, find pred, replace tail if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) { int res = lfs_pred(lfs, dir.pair, &newcwd); if (res < 0) { return res; } LFS_ASSERT(res); // must have pred newcwd.d.tail[0] = dir.d.tail[0]; newcwd.d.tail[1] = dir.d.tail[1]; err = lfs_dir_commit(lfs, &newcwd, NULL, 0); if (err) { return err; } } return 0; } int lfs_getattrs(lfs_t *lfs, const char *path, const struct lfs_attr *attrs, int count) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } return lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); } int lfs_setattrs(lfs_t *lfs, const char *path, const struct lfs_attr *attrs, int count) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } return lfs_dir_setattrs(lfs, &cwd, &entry, attrs, count); } /// Filesystem operations /// static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) { lfs->cfg = cfg; // setup read cache lfs->rcache.block = 0xffffffff; if (lfs->cfg->read_buffer) { lfs->rcache.buffer = lfs->cfg->read_buffer; } else { lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size); if (!lfs->rcache.buffer) { return LFS_ERR_NOMEM; } } // setup program cache lfs->pcache.block = 0xffffffff; if (lfs->cfg->prog_buffer) { lfs->pcache.buffer = lfs->cfg->prog_buffer; } else { lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!lfs->pcache.buffer) { return LFS_ERR_NOMEM; } } // setup lookahead, round down to nearest 32-bits LFS_ASSERT(lfs->cfg->lookahead % 32 == 0); LFS_ASSERT(lfs->cfg->lookahead > 0); if (lfs->cfg->lookahead_buffer) { lfs->free.buffer = lfs->cfg->lookahead_buffer; } else { lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8); if (!lfs->free.buffer) { return LFS_ERR_NOMEM; } } // check that program and read sizes are multiples of the block size LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0); LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0); // check that the block size is large enough to fit ctz pointers LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4)) <= lfs->cfg->block_size); // check that the size limits are sane LFS_ASSERT(lfs->cfg->inline_size <= LFS_INLINE_MAX); LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->read_size); lfs->inline_size = lfs->cfg->inline_size; if (!lfs->inline_size) { lfs->inline_size = lfs_min(LFS_INLINE_MAX, lfs->cfg->read_size); } LFS_ASSERT(lfs->cfg->attrs_size <= LFS_ATTRS_MAX); lfs->attrs_size = lfs->cfg->attrs_size; if (!lfs->attrs_size) { lfs->attrs_size = LFS_ATTRS_MAX; } LFS_ASSERT(lfs->cfg->name_size <= LFS_NAME_MAX); lfs->name_size = lfs->cfg->name_size; if (!lfs->name_size) { lfs->name_size = LFS_NAME_MAX; } // setup default state lfs->root[0] = 0xffffffff; lfs->root[1] = 0xffffffff; lfs->files = NULL; lfs->dirs = NULL; lfs->deorphaned = false; return 0; } static int lfs_deinit(lfs_t *lfs) { // free allocated memory if (!lfs->cfg->read_buffer) { lfs_free(lfs->rcache.buffer); } if (!lfs->cfg->prog_buffer) { lfs_free(lfs->pcache.buffer); } if (!lfs->cfg->lookahead_buffer) { lfs_free(lfs->free.buffer); } return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // create free lookahead memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); lfs->free.off = 0; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count); lfs->free.i = 0; lfs_alloc_ack(lfs); // create superblock dir lfs_dir_t superdir; err = lfs_dir_alloc(lfs, &superdir); if (err) { return err; } // write root directory lfs_dir_t root; err = lfs_dir_alloc(lfs, &root); if (err) { return err; } err = lfs_dir_commit(lfs, &root, NULL, 0); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; superdir.d.tail[0] = lfs->root[0]; superdir.d.tail[1] = lfs->root[1]; // write one superblock lfs_superblock_t superblock; superblock.d.version = LFS_DISK_VERSION, superblock.d.root[0] = lfs->root[0]; superblock.d.root[1] = lfs->root[1]; superblock.d.block_size = lfs->cfg->block_size; superblock.d.block_count = lfs->cfg->block_count; superblock.d.inline_size = lfs->inline_size; superblock.d.attrs_size = lfs->attrs_size; superblock.d.name_size = lfs->name_size; lfs_entry_t superentry; superentry.d.type = LFS_STRUCT_DIR | LFS_TYPE_SUPERBLOCK; superentry.d.elen = sizeof(superblock.d); superentry.d.alen = 0; superentry.d.nlen = strlen("littlefs"); superentry.off = sizeof(superdir.d); superentry.size = 0; lfs_entry_tole32(&superentry.d); lfs_superblock_tole32(&superblock.d); err = lfs_dir_set(lfs, &superdir, &superentry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 0, &superentry.d, 4}, {LFS_FROM_MEM, 0, 0, &superblock.d, sizeof(superblock.d)}, {LFS_FROM_MEM, 0, 0, "littlefs", superentry.d.nlen}}, 3); if (err) { return err; } // sanity check that fetch works err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } return lfs_deinit(lfs); } int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // setup free lookahead lfs->free.off = 0; lfs->free.size = 0; lfs->free.i = 0; lfs_alloc_ack(lfs); // load superblock lfs_dir_t dir; err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { if (err == LFS_ERR_CORRUPT) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); } return err; } lfs_entry_t entry = {.off = sizeof(dir.d)}; err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, sizeof(entry.d)); if (err) { return err; } lfs_superblock_t superblock; memset(&superblock.d, 0, sizeof(superblock.d)); err = lfs_dir_get(lfs, &dir, sizeof(dir.d)+4, &superblock.d, lfs_min(sizeof(superblock.d), lfs_entry_elen(&entry))); lfs_superblock_fromle32(&superblock.d); if (err) { return err; } char magic[8]; err = lfs_dir_get(lfs, &dir, sizeof(dir.d)+lfs_entry_size(&entry)-entry.d.nlen, magic, lfs_min(sizeof(magic), entry.d.nlen)); if (err) { return err; } if (memcmp(magic, "littlefs", 8) != 0) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); return LFS_ERR_CORRUPT; } uint16_t major_version = (0xffff & (superblock.d.version >> 16)); uint16_t minor_version = (0xffff & (superblock.d.version >> 0)); if ((major_version != LFS_DISK_VERSION_MAJOR || minor_version > LFS_DISK_VERSION_MINOR)) { LFS_ERROR("Invalid version %d.%d", major_version, minor_version); return LFS_ERR_INVAL; } if (superblock.d.inline_size) { if (superblock.d.inline_size > lfs->inline_size) { LFS_ERROR("Unsupported inline size (%d > %d)", superblock.d.inline_size, lfs->inline_size); return LFS_ERR_INVAL; } lfs->inline_size = superblock.d.inline_size; } if (superblock.d.attrs_size) { if (superblock.d.attrs_size > lfs->attrs_size) { LFS_ERROR("Unsupported attrs size (%d > %d)", superblock.d.attrs_size, lfs->attrs_size); return LFS_ERR_INVAL; } lfs->attrs_size = superblock.d.attrs_size; } if (superblock.d.name_size) { if (superblock.d.name_size > lfs->name_size) { LFS_ERROR("Unsupported name size (%d > %d)", superblock.d.name_size, lfs->name_size); return LFS_ERR_INVAL; } lfs->name_size = superblock.d.name_size; } lfs->root[0] = superblock.d.root[0]; lfs->root[1] = superblock.d.root[1]; return 0; } int lfs_unmount(lfs_t *lfs) { return lfs_deinit(lfs); } /// Internal filesystem filesystem operations /// int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } lfs_dir_t dir; int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // iterate over contents lfs_entry_t entry; while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) { err = lfs_dir_get(lfs, &dir, dir.off, &entry.d, sizeof(entry.d)); lfs_entry_fromle32(&entry.d); if (err) { return err; } dir.off += lfs_entry_size(&entry); if ((0x70 & entry.d.type) == LFS_STRUCT_CTZ) { err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL, entry.d.u.file.head, entry.d.u.file.size, cb, data); if (err) { return err; } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (lfs_pairisnull(cwd)) { break; } } // iterate over any open files for (lfs_file_t *f = lfs->files; f; f = f->next) { if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->head, f->size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over all directory directory entries int err = lfs_dir_fetch(lfs, pdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } while (!lfs_pairisnull(pdir->d.tail)) { if (lfs_paircmp(pdir->d.tail, dir) == 0) { return true; } err = lfs_dir_fetch(lfs, pdir, pdir->d.tail); if (err) { return err; } } return false; } static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *parent, lfs_entry_t *entry) { if (lfs_pairisnull(lfs->root)) { return 0; } parent->d.tail[0] = 0; parent->d.tail[1] = 1; // iterate over all directory directory entries while (!lfs_pairisnull(parent->d.tail)) { int err = lfs_dir_fetch(lfs, parent, parent->d.tail); if (err) { return err; } while (true) { err = lfs_dir_next(lfs, parent, entry); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } if (((0x70 & entry->d.type) == LFS_STRUCT_DIR) && lfs_paircmp(entry->d.u.dir, dir) == 0) { return true; } } } return false; } static int lfs_moved(lfs_t *lfs, const void *e) { if (lfs_pairisnull(lfs->root)) { return 0; } // skip superblock lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1}); if (err) { return err; } // iterate over all directory directory entries lfs_entry_t entry; while (!lfs_pairisnull(cwd.d.tail)) { err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail); if (err) { return err; } while (true) { err = lfs_dir_next(lfs, &cwd, &entry); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } if (!(LFS_STRUCT_MOVED & entry.d.type) && memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) { return true; } } } return false; } static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], const lfs_block_t newpair[2]) { // find parent lfs_dir_t parent; lfs_entry_t entry; int res = lfs_parent(lfs, oldpair, &parent, &entry); if (res < 0) { return res; } if (res) { // update disk, this creates a desync entry.d.u.dir[0] = newpair[0]; entry.d.u.dir[1] = newpair[1]; int err = lfs_dir_set(lfs, &parent, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, sizeof(entry.d), &entry.d, sizeof(entry.d)}}, 1); if (err) { return err; } // update internal root if (lfs_paircmp(oldpair, lfs->root) == 0) { LFS_DEBUG("Relocating root %d %d", newpair[0], newpair[1]); lfs->root[0] = newpair[0]; lfs->root[1] = newpair[1]; } // clean up bad block, which should now be a desync return lfs_deorphan(lfs); } // find pred res = lfs_pred(lfs, oldpair, &parent); if (res < 0) { return res; } if (res) { // just replace bad pair, no desync can occur parent.d.tail[0] = newpair[0]; parent.d.tail[1] = newpair[1]; return lfs_dir_commit(lfs, &parent, NULL, 0); } // couldn't find dir, must be new return 0; } int lfs_deorphan(lfs_t *lfs) { lfs->deorphaned = true; if (lfs_pairisnull(lfs->root)) { return 0; } lfs_dir_t pdir = {.d.size = 0x80000000}; lfs_dir_t cwd = {.d.tail[0] = 0, .d.tail[1] = 1}; // iterate over all directory directory entries while (!lfs_pairisnull(cwd.d.tail)) { int err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail); if (err) { return err; } // check head blocks for orphans if (!(0x80000000 & pdir.d.size)) { // check if we have a parent lfs_dir_t parent; lfs_entry_t entry; int res = lfs_parent(lfs, pdir.d.tail, &parent, &entry); if (res < 0) { return res; } if (!res) { // we are an orphan LFS_DEBUG("Found orphan %d %d", pdir.d.tail[0], pdir.d.tail[1]); pdir.d.tail[0] = cwd.d.tail[0]; pdir.d.tail[1] = cwd.d.tail[1]; err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } break; } if (!lfs_pairsync(entry.d.u.dir, pdir.d.tail)) { // we have desynced LFS_DEBUG("Found desync %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); pdir.d.tail[0] = entry.d.u.dir[0]; pdir.d.tail[1] = entry.d.u.dir[1]; err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } break; } } // check entries for moves lfs_entry_t entry; while (true) { err = lfs_dir_next(lfs, &cwd, &entry); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } // found moved entry if (entry.d.type & LFS_STRUCT_MOVED) { int moved = lfs_moved(lfs, &entry.d.u); if (moved < 0) { return moved; } if (moved) { LFS_DEBUG("Found move %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1); if (err) { return err; } } else { LFS_DEBUG("Found partial move %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); entry.d.type &= ~LFS_STRUCT_MOVED; err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, sizeof(entry.d), &entry.d, sizeof(entry.d)}}, 1); if (err) { return err; } } } } memcpy(&pdir, &cwd, sizeof(pdir)); } return 0; } /// External filesystem filesystem operations /// int lfs_fs_getattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { lfs_dir_t dir; int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } lfs_entry_t entry = {.off = sizeof(dir.d)}; err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, sizeof(entry.d)); if (err) { return err; } entry.size = lfs_entry_size(&entry); return lfs_dir_getattrs(lfs, &dir, &entry, attrs, count); } int lfs_fs_setattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { lfs_dir_t dir; int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } lfs_entry_t entry = {.off = sizeof(dir.d)}; err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, sizeof(entry.d)); if (err) { return err; } entry.size = lfs_entry_size(&entry); return lfs_dir_setattrs(lfs, &dir, &entry, attrs, count); } static int lfs_fs_size_count(void *p, lfs_block_t block) { lfs_size_t *size = p; *size += 1; return 0; } lfs_ssize_t lfs_fs_size(lfs_t *lfs) { lfs_size_t size = 0; int err = lfs_traverse(lfs, lfs_fs_size_count, &size); if (err) { return err; } return size; }