/* * The little filesystem * * Copyright (c) 2017 Christopher Haster * Distributed under the MIT license */ #include "lfs.h" #include "lfs_util.h" #include #include /// Block device operations /// static int lfs_bd_info(lfs_t *lfs, struct lfs_bd_info *info) { return lfs->bd_ops->info(lfs->bd, info); } static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, void *buffer) { return lfs->bd_ops->read(lfs->bd, block, off, size, buffer); } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { return lfs->bd_ops->prog(lfs->bd, block, off, size, buffer); } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size) { return lfs->bd_ops->erase(lfs->bd, block, off, size); } static int lfs_bd_sync(lfs_t *lfs) { return lfs->bd_ops->sync(lfs->bd); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_bd_read(lfs, block, off+i, 1, &c); if (err) { return err; } if (c != *data) { return false; } data += 1; } return true; } static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { while (off < size) { uint8_t c; int err = lfs_bd_read(lfs, block, off, 1, &c); if (err) { return err; } *crc = lfs_crc(&c, 1, *crc); off += 1; } return 0; } /// Block allocator /// // predeclared filesystem traversal static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data); int lfs_deorphan(lfs_t *lfs); static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t off = block - lfs->free.begin; if (off < LFS_CFG_LOOKAHEAD) { lfs->lookahead[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc_stride(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t noff = block - lfs->free.begin; lfs_block_t off = lfs->free.end - lfs->free.begin; if (noff < off) { lfs->free.end = noff + lfs->free.begin; } return 0; } static int lfs_alloc_scan(lfs_t *lfs) { lfs_block_t start = lfs->free.begin; while (true) { // mask out blocks in lookahead region memset(lfs->lookahead, 0, sizeof(lfs->lookahead)); int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } // check if we've found a free block for (uint32_t off = 0; off < LFS_CFG_LOOKAHEAD; off++) { if (lfs->lookahead[off / 32] & (1U << (off % 32))) { continue; } // found free block, now find stride of free blocks // since this is relatively cheap (stress on relatively) lfs->free.begin += off; lfs->free.end = lfs->block_count; // before superblock // find maximum stride in tree return lfs_traverse(lfs, lfs_alloc_stride, lfs); } // continue to next lookahead unless we've searched the whole device if (start-1 - lfs->free.begin < LFS_CFG_LOOKAHEAD) { return 0; } // continue to next lookahead region lfs->free.begin += LFS_CFG_LOOKAHEAD; } } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { // If we don't remember any free blocks we will need to start searching if (lfs->free.begin == lfs->free.end) { int err = lfs_alloc_scan(lfs); if (err) { return err; } if (lfs->free.begin == lfs->free.end) { // Still can't allocate a block? check for orphans int err = lfs_deorphan(lfs); if (err) { return err; } err = lfs_alloc_scan(lfs); if (err) { return err; } if (lfs->free.begin == lfs->free.end) { // Ok, it's true, we're out of space return LFS_ERROR_NO_SPACE; } } } // Take first available block *block = lfs->free.begin; lfs->free.begin += 1; return 0; } static int lfs_alloc_erased(lfs_t *lfs, lfs_block_t *block) { int err = lfs_alloc(lfs, block); if (err) { return err; } return lfs_bd_erase(lfs, *block, 0, lfs->block_size); } /// Index list operations /// // Next index offset static lfs_off_t lfs_indexnext(lfs_t *lfs, lfs_off_t ioff) { ioff += 1; while (ioff % lfs->words == 0) { ioff += lfs_min(lfs_ctz(ioff/lfs->words + 1), lfs->words-1) + 1; } return ioff; } static lfs_off_t lfs_indexfrom(lfs_t *lfs, lfs_off_t off) { lfs_off_t i = 0; while (off > lfs->block_size) { i = lfs_indexnext(lfs, i); off -= lfs->block_size; } return i; } // Find index in index chain given its index offset static int lfs_index_find(lfs_t *lfs, lfs_block_t head, lfs_size_t icount, lfs_off_t ioff, lfs_block_t *block) { lfs_off_t iitarget = ioff / lfs->words; lfs_off_t iicurrent = (icount-1) / lfs->words; while (iitarget != iicurrent) { lfs_size_t skip = lfs_min( lfs_min(lfs_ctz(iicurrent+1), lfs->words-1), lfs_npw2((iitarget ^ iicurrent)+1)-1); int err = lfs_bd_read(lfs, head, 4*skip, 4, &head); if (err) { return err; } iicurrent -= 1 << skip; } return lfs_bd_read(lfs, head, 4*(ioff % lfs->words), 4, block); } // Append index to index chain, updates head and icount static int lfs_index_append(lfs_t *lfs, lfs_block_t *headp, lfs_size_t *icountp, lfs_block_t block) { lfs_block_t head = *headp; lfs_size_t ioff = *icountp - 1; ioff += 1; while (ioff % lfs->words == 0) { lfs_block_t nhead; int err = lfs_alloc_erased(lfs, &nhead); if (err) { return err; } lfs_off_t skips = lfs_min( lfs_ctz(ioff/lfs->words + 1), lfs->words-2) + 1; for (lfs_off_t i = 0; i < skips; i++) { err = lfs_bd_prog(lfs, nhead, 4*i, 4, &head); if (err) { return err; } if (head && i != skips-1) { err = lfs_bd_read(lfs, head, 4*i, 4, &head); if (err) { return err; } } } ioff += skips; head = nhead; } int err = lfs_bd_prog(lfs, head, 4*(ioff % lfs->words), 4, &block); if (err) { return err; } *headp = head; *icountp = ioff + 1; return 0; } static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head, lfs_size_t icount, int (*cb)(void*, lfs_block_t), void *data) { lfs_off_t iicurrent = (icount-1) / lfs->words; while (iicurrent > 0) { int err = cb(data, head); if (err) { return err; } lfs_size_t skip = lfs_min(lfs_ctz(iicurrent+1), lfs->words-1); for (lfs_off_t i = skip; i < lfs->words; i++) { lfs_block_t block; int err = lfs_bd_read(lfs, head, 4*i, 4, &block); if (err) { return err; } err = cb(data, block); if (err) { return err; } } err = lfs_bd_read(lfs, head, 0, 4, &head); if (err) { return err; } iicurrent -= 1; } int err = cb(data, head); if (err) { return err; } for (lfs_off_t i = 0; i < lfs->words; i++) { lfs_block_t block; int err = lfs_bd_read(lfs, head, 4*i, 4, &block); if (err) { return err; } err = cb(data, block); if (err) { return err; } } return 0; } /// Metadata pair operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !((paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0])); } struct lfs_fetch_region { lfs_off_t off; lfs_size_t size; void *data; }; static int lfs_pair_fetch(lfs_t *lfs, lfs_block_t pair[2], int count, const struct lfs_fetch_region *regions) { int checked = 0; int rev = 0; for (int i = 0; i < 2; i++) { uint32_t nrev; int err = lfs_bd_read(lfs, pair[1], 0, 4, &nrev); if (err) { return err; } if (checked > 0 && lfs_scmp(nrev, rev) < 0) { continue; } uint32_t crc = 0xffffffff; err = lfs_bd_crc(lfs, pair[1], 0, lfs->block_size, &crc); if (err) { return err; } if (crc != 0) { lfs_pairswap(pair); } checked += 1; rev = nrev; lfs_pairswap(pair); } if (checked == 0) { LFS_ERROR("Corrupted metadata pair at %d %d", pair[0], pair[1]); return LFS_ERROR_CORRUPT; } for (int i = 0; i < count; i++) { int err = lfs_bd_read(lfs, pair[0], regions[i].off, regions[i].size, regions[i].data); if (err) { return err; } } return 0; } struct lfs_commit_region { lfs_off_t off; lfs_size_t size; const void *data; }; static int lfs_pair_commit(lfs_t *lfs, lfs_block_t pair[2], int count, const struct lfs_commit_region *regions) { uint32_t crc = 0xffffffff; int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size); if (err) { return err; } lfs_off_t off = 0; while (off < lfs->block_size - 4) { if (count > 0 && regions[0].off == off) { crc = lfs_crc(regions[0].data, regions[0].size, crc); int err = lfs_bd_prog(lfs, pair[1], off, regions[0].size, regions[0].data); if (err) { return err; } off += regions[0].size; count -= 1; regions += 1; } else { // TODO faster strides? // TODO should we start crcing what's already // programmed after dir size? uint8_t data; int err = lfs_bd_read(lfs, pair[0], off, 1, &data); if (err) { return err; } crc = lfs_crc((void*)&data, 1, crc); err = lfs_bd_prog(lfs, pair[1], off, 1, &data); if (err) { return err; } off += 1; } } err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc); if (err) { return err; } err = lfs_bd_sync(lfs); if (err) { return err; } lfs_pairswap(pair); return 0; } // TODO maybe there is a better abstraction for this? static int lfs_pair_shift(lfs_t *lfs, lfs_block_t pair[2], int count, const struct lfs_commit_region *regions, lfs_off_t blank_start, lfs_size_t blank_size) { uint32_t crc = 0xffffffff; int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size); if (err) { return err; } lfs_off_t woff = 0; lfs_off_t roff = 0; while (woff < lfs->block_size - 4) { if (count > 0 && regions[0].off == woff) { crc = lfs_crc(regions[0].data, regions[0].size, crc); int err = lfs_bd_prog(lfs, pair[1], woff, regions[0].size, regions[0].data); if (err) { return err; } woff += regions[0].size; roff += regions[0].size; count -= 1; regions += 1; } else if (roff == blank_start) { roff += blank_size; } else if (roff < lfs->block_size - 4) { // TODO faster strides? // TODO should we start crcing what's already // programmed after dir size? uint8_t data; int err = lfs_bd_read(lfs, pair[0], roff, 1, &data); if (err) { return err; } crc = lfs_crc((void*)&data, 1, crc); err = lfs_bd_prog(lfs, pair[1], woff, 1, &data); if (err) { return err; } woff += 1; roff += 1; } else { uint8_t data = 0; crc = lfs_crc((void*)&data, 1, crc); err = lfs_bd_prog(lfs, pair[1], woff, 1, &data); if (err) { return err; } woff += 1; } } err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc); if (err) { return err; } err = lfs_bd_sync(lfs); if (err) { return err; } lfs_pairswap(pair); return 0; } /// Directory operations /// static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir, lfs_block_t parent[2], lfs_block_t tail[2]) { // Allocate pair of dir blocks for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[i]); if (err) { return err; } } // Rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev); if (err) { return err; } dir->d.rev += 1; // Calculate total size dir->d.size = sizeof(dir->d); dir->off = sizeof(dir->d); // Other defaults dir->d.tail[0] = tail[0]; dir->d.tail[1] = tail[1]; // Write out to memory if (!parent) { return lfs_pair_commit(lfs, dir->pair, 1, (struct lfs_commit_region[]){ {0, sizeof(dir->d), &dir->d} }); } else { dir->d.size += 2*sizeof(struct lfs_disk_entry) + 3; return lfs_pair_commit(lfs, dir->pair, 5, (struct lfs_commit_region[]){ {0, sizeof(dir->d), &dir->d}, {sizeof(dir->d), sizeof(struct lfs_disk_entry), &(struct lfs_disk_entry){ .type = LFS_TYPE_DIR, .len = sizeof(struct lfs_disk_entry)+1, .u.dir[0] = dir->pair[0], .u.dir[1] = dir->pair[1], }}, {sizeof(dir->d)+sizeof(struct lfs_disk_entry), 1, "."}, {sizeof(dir->d)+sizeof(struct lfs_disk_entry)+1, sizeof(struct lfs_disk_entry), &(struct lfs_disk_entry){ .type = LFS_TYPE_DIR, .len = sizeof(struct lfs_disk_entry)+2, .u.dir[0] = parent[0] ? parent[0] : dir->pair[0], .u.dir[1] = parent[1] ? parent[1] : dir->pair[1], }}, {sizeof(dir->d)+2*sizeof(struct lfs_disk_entry)+1, 2, ".."}, }); } } static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, lfs_block_t pair[2]) { dir->pair[0] = pair[0]; dir->pair[1] = pair[1]; dir->off = sizeof(dir->d); return lfs_pair_fetch(lfs, dir->pair, 1, (struct lfs_fetch_region[1]) { {0, sizeof(dir->d), &dir->d} }); } static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { while (true) { if ((0x7fffffff & dir->d.size) - dir->off < sizeof(entry->d)) { if (!(dir->d.size >> 31)) { entry->dir[0] = dir->pair[0]; entry->dir[1] = dir->pair[1]; entry->off = dir->off; return LFS_ERROR_NO_ENTRY; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } dir->off = sizeof(dir->d); } int err = lfs_bd_read(lfs, dir->pair[0], dir->off, sizeof(entry->d), &entry->d); if (err) { return err; } dir->off += entry->d.len; if (entry->d.type == LFS_TYPE_REG || entry->d.type == LFS_TYPE_DIR) { entry->dir[0] = dir->pair[0]; entry->dir[1] = dir->pair[1]; entry->off = dir->off - entry->d.len; return 0; } } } static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir, const char **path, lfs_entry_t *entry) { while (true) { const char *pathname = *path; lfs_size_t pathlen = strcspn(pathname, "/"); while (true) { int err = lfs_dir_next(lfs, dir, entry); if (err) { return err; } if (entry->d.len - sizeof(entry->d) != pathlen) { continue; } int ret = lfs_bd_cmp(lfs, entry->dir[0], entry->off + sizeof(entry->d), pathlen, pathname); if (ret < 0) { return ret; } // Found match if (ret == true) { break; } } pathname += pathlen; pathname += strspn(pathname, "/"); if (pathname[0] == '\0') { return 0; } if (entry->d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir); if (err) { return err; } *path = pathname; } return 0; } static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir, const char **path, lfs_entry_t *entry) { int err = lfs_dir_find(lfs, dir, path, entry); if (err != LFS_ERROR_NO_ENTRY) { return err ? err : LFS_ERROR_EXISTS; } // Check if we fit if ((0x7fffffff & dir->d.size) + sizeof(entry->d) + strlen(*path) > lfs->block_size - 4) { lfs_dir_t olddir; memcpy(&olddir, dir, sizeof(olddir)); int err = lfs_dir_alloc(lfs, dir, 0, olddir.d.tail); if (err) { return err; } entry->dir[0] = dir->pair[0]; entry->dir[1] = dir->pair[1]; entry->off = dir->off; olddir.d.rev += 1; olddir.d.size |= 1 << 31; olddir.d.tail[0] = dir->pair[0]; olddir.d.tail[1] = dir->pair[1]; return lfs_pair_commit(lfs, olddir.pair, 1, (struct lfs_commit_region[]){ {0, sizeof(olddir.d), &olddir.d} }); } return 0; } int lfs_mkdir(lfs_t *lfs, const char *path) { // Allocate entry for directory lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_append(lfs, &cwd, &path, &entry); if (err) { return err; } // Build up new directory lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir, cwd.pair, cwd.d.tail); if (err) { return err; } entry.d.type = LFS_TYPE_DIR; entry.d.len = sizeof(entry.d) + strlen(path); entry.d.u.dir[0] = dir.pair[0]; entry.d.u.dir[1] = dir.pair[1]; cwd.d.rev += 1; cwd.d.size += entry.d.len; cwd.d.tail[0] = dir.pair[0]; cwd.d.tail[1] = dir.pair[1]; return lfs_pair_commit(lfs, entry.dir, 3, (struct lfs_commit_region[3]) { {0, sizeof(cwd.d), &cwd.d}, {entry.off, sizeof(entry.d), &entry.d}, {entry.off+sizeof(entry.d), entry.d.len - sizeof(entry.d), path} }); } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { if (path[0] == '/') { dir->pair[0] = lfs->root[0]; dir->pair[1] = lfs->root[1]; } else { dir->pair[0] = lfs->cwd[0]; dir->pair[1] = lfs->cwd[1]; } int err = lfs_dir_fetch(lfs, dir, dir->pair); if (err) { return err; } else if (strcmp(path, "/") == 0) { return 0; } lfs_entry_t entry; err = lfs_dir_find(lfs, dir, &path, &entry); if (err) { return err; } else if (entry.d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } return lfs_dir_fetch(lfs, dir, entry.d.u.dir); } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // Do nothing, dir is always synchronized return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); lfs_entry_t entry; int err = lfs_dir_next(lfs, dir, &entry); if (err) { return (err == LFS_ERROR_NO_ENTRY) ? 0 : err; } info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, entry.dir[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 1; } /// File operations /// int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { // Allocate entry for file if it doesn't exist // TODO check open files lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd); if (err) { return err; } if (flags & LFS_O_CREAT) { err = lfs_dir_append(lfs, &cwd, &path, &file->entry); if (err && err != LFS_ERROR_EXISTS) { return err; } } else { err = lfs_dir_find(lfs, &cwd, &path, &file->entry); if (err) { return err; } } if ((flags & LFS_O_CREAT) && err != LFS_ERROR_EXISTS) { // Store file file->head = 0; file->size = 0; file->wblock = 0; file->windex = 0; file->rblock = 0; file->rindex = 0; file->roff = 0; file->entry.d.type = 1; file->entry.d.len = sizeof(file->entry.d) + strlen(path); file->entry.d.u.file.head = file->head; file->entry.d.u.file.size = file->size; cwd.d.rev += 1; cwd.d.size += file->entry.d.len; return lfs_pair_commit(lfs, file->entry.dir, 3, (struct lfs_commit_region[3]) { {0, sizeof(cwd.d), &cwd.d}, {file->entry.off, sizeof(file->entry.d), &file->entry.d}, {file->entry.off+sizeof(file->entry.d), file->entry.d.len-sizeof(file->entry.d), path} }); } else if (file->entry.d.type == LFS_TYPE_DIR) { return LFS_ERROR_IS_DIR; } else { file->head = file->entry.d.u.file.head; file->size = file->entry.d.u.file.size; file->windex = lfs_indexfrom(lfs, file->size); file->rblock = 0; file->rindex = 0; file->roff = 0; // TODO do this lazily in write? // TODO cow the head i/d block if (file->size < lfs->block_size) { file->wblock = file->head; } else { int err = lfs_index_find(lfs, file->head, file->windex, file->windex, &file->wblock); if (err) { return err; } } return 0; } } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { // Store file lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, file->entry.dir); if (err) { return err; } file->entry.d.u.file.head = file->head; file->entry.d.u.file.size = file->size; cwd.d.rev += 1; return lfs_pair_commit(lfs, file->entry.dir, 3, (struct lfs_commit_region[3]) { {0, sizeof(cwd.d), &cwd.d}, {file->entry.off, sizeof(file->entry.d), &file->entry.d}, }); } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; while (nsize > 0) { lfs_off_t woff = file->size % lfs->block_size; if (file->size == 0) { int err = lfs_alloc_erased(lfs, &file->wblock); if (err) { return err; } file->head = file->wblock; file->windex = 0; } else if (woff == 0) { int err = lfs_alloc_erased(lfs, &file->wblock); if (err) { return err; } err = lfs_index_append(lfs, &file->head, &file->windex, file->wblock); if (err) { return err; } } lfs_size_t diff = lfs_min(nsize, lfs->block_size - woff); int err = lfs_bd_prog(lfs, file->wblock, woff, diff, data); if (err) { return err; } file->size += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; while (nsize > 0 && file->roff < file->size) { lfs_off_t roff = file->roff % lfs->block_size; // TODO cache index blocks if (file->size < lfs->block_size) { file->rblock = file->head; } else if (roff == 0) { int err = lfs_index_find(lfs, file->head, file->windex, file->rindex, &file->rblock); if (err) { return err; } file->rindex = lfs_indexnext(lfs, file->rindex); } lfs_size_t diff = lfs_min( lfs_min(nsize, file->size-file->roff), lfs->block_size - roff); int err = lfs_bd_read(lfs, file->rblock, roff, diff, data); if (err) { return err; } file->roff += diff; data += diff; nsize -= diff; } return size - nsize; } /// Generic filesystem operations /// static int lfs_configure(lfs_t *lfs, const struct lfs_config *config) { lfs->bd = config->bd; lfs->bd_ops = config->bd_ops; struct lfs_bd_info info; int err = lfs_bd_info(lfs, &info); if (err) { return err; } if (config->read_size) { if (config->read_size < info.read_size || config->read_size % info.read_size != 0) { LFS_ERROR("Invalid read size %u, device has %u\n", config->read_size, info.read_size); return LFS_ERROR_INVALID; } lfs->read_size = config->read_size; } else { lfs->read_size = info.read_size; } if (config->prog_size) { if (config->prog_size < info.prog_size || config->prog_size % info.prog_size != 0) { LFS_ERROR("Invalid prog size %u, device has %u\n", config->prog_size, info.prog_size); return LFS_ERROR_INVALID; } lfs->prog_size = config->prog_size; } else { lfs->prog_size = info.prog_size; } if (config->block_size) { if (config->block_size < info.erase_size || config->block_size % info.erase_size != 0) { LFS_ERROR("Invalid block size %u, device has %u\n", config->prog_size, info.prog_size); return LFS_ERROR_INVALID; } lfs->block_size = config->block_size; } else { lfs->block_size = lfs_min(512, info.erase_size); } if (config->block_count) { if (config->block_count > info.total_size/info.erase_size) { LFS_ERROR("Invalid block size %u, device has %u\n", config->block_size, (uint32_t)(info.total_size/info.erase_size)); return LFS_ERROR_INVALID; } lfs->block_count = config->block_count; } else { lfs->block_count = info.total_size / info.erase_size; } lfs->words = lfs->block_size / sizeof(uint32_t); return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *config) { int err = lfs_configure(lfs, config); if (err) { return err; } // Create free list lfs->free.begin = 2; lfs->free.end = lfs->block_count-1; // Write root directory lfs_dir_t root; err = lfs_dir_alloc(lfs, &root, (lfs_block_t[2]){0, 0}, (lfs_block_t[2]){0, 0}); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; lfs->cwd[0] = root.pair[0]; lfs->cwd[1] = root.pair[1]; // Write superblocks lfs_superblock_t superblock = { .pair = {0, 1}, .d.rev = 1, .d.size = sizeof(superblock), .d.root = {lfs->cwd[0], lfs->cwd[1]}, .d.magic = {"littlefs"}, .d.block_size = lfs->block_size, .d.block_count = lfs->block_count, }; for (int i = 0; i < 2; i++) { int err = lfs_pair_commit(lfs, superblock.pair, 1, (struct lfs_commit_region[]){ {0, sizeof(superblock.d), &superblock.d} }); if (err) { LFS_ERROR("Failed to write superblock at %d", superblock.pair[1]); return err; } uint32_t crc = 0xffffffff; err = lfs_bd_crc(lfs, superblock.pair[0], 0, lfs->block_size, &crc); if (err || crc != 0) { LFS_ERROR("Failed to write superblock at %d", superblock.pair[0]); return err ? err : LFS_ERROR_CORRUPT; } } return 0; } int lfs_mount(lfs_t *lfs, const struct lfs_config *config) { int err = lfs_configure(lfs, config); if (err) { return err; } lfs_superblock_t superblock = { .pair = {0, 1}, }; err = lfs_pair_fetch(lfs, superblock.pair, 1, (struct lfs_fetch_region[]){ {0, sizeof(superblock.d), &superblock.d} }); if ((err == LFS_ERROR_CORRUPT || memcmp(superblock.d.magic, "littlefs", 8) != 0)) { LFS_ERROR("Invalid superblock at %d %d", superblock.pair[0], superblock.pair[1]); return LFS_ERROR_CORRUPT; } lfs->root[0] = superblock.d.root[0]; lfs->root[1] = superblock.d.root[1]; lfs->cwd[0] = superblock.d.root[0]; lfs->cwd[1] = superblock.d.root[1]; return err; } int lfs_unmount(lfs_t *lfs) { // Do nothing for now return 0; } static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { // iterate over metadata pairs lfs_dir_t dir; lfs_file_t file; lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // skip '.' and '..' dir.off += 2*sizeof(struct lfs_disk_entry) + 3; // iterate over contents while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) { int err = lfs_bd_read(lfs, dir.pair[0], dir.off, sizeof(file.entry.d), &file.entry.d); if (err) { return err; } dir.off += file.entry.d.len; if ((0xf & file.entry.d.type) == LFS_TYPE_REG) { if (file.entry.d.u.file.size < lfs->block_size) { int err = cb(data, file.entry.d.u.file.head); if (err) { return err; } } else { int err = lfs_index_traverse(lfs, file.entry.d.u.file.head, lfs_indexfrom(lfs, file.entry.d.u.file.size), cb, data); if (err) { return err; } } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (!cwd[0]) { return 0; } } } int lfs_deorphan(lfs_t *lfs) { // iterate over all directories lfs_block_t pred[2] = {0, 1}; lfs_block_t cwd[2] = {lfs->root[0], lfs->root[1]}; while (true) { lfs_dir_t child; int err = lfs_dir_fetch(lfs, &child, cwd); if (err) { return err; } // orphans can only be empty dirs // there still might be a dir block with this size that isn't // the head of a directory, so we still have to check for '..' if (child.d.size == sizeof(child.d) + 2*sizeof(struct lfs_disk_entry) + 3) { lfs_entry_t entry; err = lfs_dir_find(lfs, &child, &(const char*){".."}, &entry); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } // only the head of directories can be orphans if (err != LFS_ERROR_NO_ENTRY) { lfs_dir_t dir; int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir); if (err) { return err; } // check if we are any of our parents children while (true) { int err = lfs_dir_next(lfs, &dir, &entry); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } if (err == LFS_ERROR_NO_ENTRY) { // we are an orphan LFS_INFO("Found orphan %d %d", cwd[0], cwd[1]); int err = lfs_dir_fetch(lfs, &dir, pred); if (err) { return err; } dir.d.tail[0] = child.d.tail[0]; dir.d.tail[1] = child.d.tail[1]; dir.d.rev += 1; err = lfs_pair_commit(lfs, dir.pair, 1, (struct lfs_commit_region[]) { {0, sizeof(dir.d), &dir.d}, }); if (err) { return err; } break; } else if (lfs_paircmp(entry.d.u.dir, cwd) == 0) { // has parent break; } } } } // to next directory pred[0] = cwd[0]; pred[1] = cwd[1]; cwd[0] = child.d.tail[0]; cwd[1] = child.d.tail[1]; if (!cwd[0]) { return 0; } } } int lfs_remove(lfs_t *lfs, const char *path) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &path, &entry); if (err) { return err; } lfs_dir_t dir; if (entry.d.type == LFS_TYPE_DIR) { // must be empty before removal int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d) + 2*sizeof(struct lfs_disk_entry) + 3) { return LFS_ERROR_INVALID; } } cwd.d.rev += 1; cwd.d.size -= entry.d.len; // either shift out the one entry or remove the whole dir block if (cwd.d.size == sizeof(dir.d)) { lfs_dir_t pdir; int err = lfs_dir_fetch(lfs, &pdir, lfs->cwd); if (err) { return err; } while (lfs_paircmp(pdir.d.tail, cwd.pair) != 0) { int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail); if (err) { return err; } } pdir.d.tail[0] = cwd.d.tail[0]; pdir.d.tail[1] = cwd.d.tail[1]; pdir.d.rev += 1; err = lfs_pair_commit(lfs, pdir.pair, 1, (struct lfs_commit_region[]) { {0, sizeof(pdir.d), &pdir.d}, }); if (err) { return err; } } else { int err = lfs_pair_shift(lfs, entry.dir, 1, (struct lfs_commit_region[]) { {0, sizeof(cwd.d), &cwd.d}, }, entry.off, entry.d.len); if (err) { return err; } } if (entry.d.type == LFS_TYPE_DIR) { // remove ourselves from the dir list // this may create an orphan, which must be deorphaned lfs_dir_t pdir; memcpy(&pdir, &cwd, sizeof(pdir)); while (pdir.d.tail[0]) { if (lfs_paircmp(pdir.d.tail, entry.d.u.dir) == 0) { pdir.d.tail[0] = dir.d.tail[0]; pdir.d.tail[1] = dir.d.tail[1]; pdir.d.rev += 1; int err = lfs_pair_commit(lfs, pdir.pair, 1, (struct lfs_commit_region[]) { {0, sizeof(pdir.d), &pdir.d}, }); if (err) { return err; } break; } int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail); if (err) { return err; } } } return 0; } int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &path, &entry); if (err) { return err; } // TODO abstract out info assignment memset(info, 0, sizeof(*info)); info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, entry.dir[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 0; }