/* * The little filesystem * * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lfs.h" #include "lfs_util.h" /// Caching block device operations /// static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); while (size > 0) { if (pcache && block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(data, &pcache->buffer[off-pcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (block == rcache->block && off >= rcache->off && off < rcache->off + lfs->cfg->read_size) { // is already in rcache? lfs_size_t diff = lfs_min(size, lfs->cfg->read_size - (off-rcache->off)); memcpy(data, &rcache->buffer[off-rcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, block, off, data, diff); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // load to cache, first condition can no longer fail LFS_ASSERT(block < lfs->cfg->block_count); rcache->block = block; rcache->off = off - (off % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, rcache->block, rcache->off, rcache->buffer, lfs->cfg->read_size); if (err) { return err; } } return 0; } static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } if (c != data[i]) { return false; } } return true; } static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_cache_read(lfs, rcache, pcache, block, off+i, &c, 1); if (err) { return err; } lfs_crc(crc, &c, 1); } return 0; } static int lfs_cache_flush(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache) { if (pcache->block != 0xffffffff) { LFS_ASSERT(pcache->block < lfs->cfg->block_count); int err = lfs->cfg->prog(lfs->cfg, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block, pcache->off, pcache->buffer, lfs->cfg->prog_size); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } pcache->block = 0xffffffff; } return 0; } static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); LFS_ASSERT(off + size <= lfs->cfg->block_size); while (size > 0) { if (block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->prog_size) { // is already in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-pcache->off)); memcpy(&pcache->buffer[off-pcache->off], data, diff); data += diff; off += diff; size -= diff; if (off % lfs->cfg->prog_size == 0) { // eagerly flush out pcache if we fill up int err = lfs_cache_flush(lfs, pcache, rcache); if (err) { return err; } } continue; } // pcache must have been flushed, either by programming and // entire block or manually flushing the pcache LFS_ASSERT(pcache->block == 0xffffffff); if (off % lfs->cfg->prog_size == 0 && size >= lfs->cfg->prog_size) { // bypass pcache? LFS_ASSERT(block < lfs->cfg->block_count); lfs_size_t diff = size - (size % lfs->cfg->prog_size); int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff); if (err) { return err; } if (rcache) { int res = lfs_cache_cmp(lfs, rcache, NULL, block, off, data, diff); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } data += diff; off += diff; size -= diff; continue; } // prepare pcache, first condition can no longer fail pcache->block = block; pcache->off = off - (off % lfs->cfg->prog_size); } return 0; } /// General lfs block device operations /// static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { return lfs_cache_read(lfs, &lfs->rcache, &lfs->pcache, block, off, buffer, size); } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_prog(lfs, &lfs->pcache, NULL, block, off, buffer, size); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size); } static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) { return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc); } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) { LFS_ASSERT(block < lfs->cfg->block_count); return lfs->cfg->erase(lfs->cfg, block); } static int lfs_bd_sync(lfs_t *lfs) { lfs->rcache.block = 0xffffffff; int err = lfs_cache_flush(lfs, &lfs->pcache, NULL); if (err) { return err; } return lfs->cfg->sync(lfs->cfg); } /// Internal operations predeclared here /// int lfs_fs_traverse(lfs_t *lfs, int (*cb)(lfs_t*, void*, lfs_block_t), void *data); static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir); static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *parent, lfs_mattr_t *attr); static int lfs_moved(lfs_t *lfs, lfs_dir_t *fromdir, uint16_t fromid); static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], const lfs_block_t newpair[2]); int lfs_deorphan(lfs_t *lfs); /// Block allocator /// static int lfs_alloc_lookahead(lfs_t *lfs, void *p, lfs_block_t block) { lfs_block_t off = ((block - lfs->free.off) + lfs->cfg->block_count) % lfs->cfg->block_count; if (off < lfs->free.size) { lfs->free.buffer[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { while (true) { while (lfs->free.i != lfs->free.size) { lfs_block_t off = lfs->free.i; lfs->free.i += 1; lfs->free.ack -= 1; if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) { // found a free block *block = (lfs->free.off + off) % lfs->cfg->block_count; // eagerly find next off so an alloc ack can // discredit old lookahead blocks while (lfs->free.i != lfs->free.size && (lfs->free.buffer[lfs->free.i / 32] & (1U << (lfs->free.i % 32)))) { lfs->free.i += 1; lfs->free.ack -= 1; } return 0; } } // check if we have looked at all blocks since last ack if (lfs->free.ack == 0) { LFS_WARN("No more free space %d", lfs->free.i + lfs->free.off); return LFS_ERR_NOSPC; } lfs->free.off = (lfs->free.off + lfs->free.size) % lfs->cfg->block_count; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack); lfs->free.i = 0; // find mask of free blocks from tree memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, NULL); if (err) { return err; } } } static void lfs_alloc_ack(lfs_t *lfs) { lfs->free.ack = lfs->cfg->block_count; } /// Endian swapping functions /// //static void lfs_dir_fromle32(struct lfs_disk_dir *d) { // d->rev = lfs_fromle32(d->rev); // d->size = lfs_fromle32(d->size); // d->tail[0] = lfs_fromle32(d->tail[0]); // d->tail[1] = lfs_fromle32(d->tail[1]); //} // //static void lfs_dir_tole32(struct lfs_disk_dir *d) { // d->rev = lfs_tole32(d->rev); // d->size = lfs_tole32(d->size); // d->tail[0] = lfs_tole32(d->tail[0]); // d->tail[1] = lfs_tole32(d->tail[1]); //} // //static void lfs_entry_fromle32(struct lfs_disk_entry *d) { // d->u.dir[0] = lfs_fromle32(d->u.dir[0]); // d->u.dir[1] = lfs_fromle32(d->u.dir[1]); //} // //static void lfs_entry_tole32(struct lfs_disk_entry *d) { // d->u.dir[0] = lfs_tole32(d->u.dir[0]); // d->u.dir[1] = lfs_tole32(d->u.dir[1]); //} ///*static*/ void lfs_superblock_fromle32(struct lfs_disk_superblock *d) { // d->root[0] = lfs_fromle32(d->root[0]); // d->root[1] = lfs_fromle32(d->root[1]); // d->block_size = lfs_fromle32(d->block_size); // d->block_count = lfs_fromle32(d->block_count); // d->version = lfs_fromle32(d->version); // d->inline_size = lfs_fromle32(d->inline_size); // d->attrs_size = lfs_fromle32(d->attrs_size); // d->name_size = lfs_fromle32(d->name_size); //} // ///*static*/ void lfs_superblock_tole32(struct lfs_disk_superblock *d) { // d->root[0] = lfs_tole32(d->root[0]); // d->root[1] = lfs_tole32(d->root[1]); // d->block_size = lfs_tole32(d->block_size); // d->block_count = lfs_tole32(d->block_count); // d->version = lfs_tole32(d->version); // d->inline_size = lfs_tole32(d->inline_size); // d->attrs_size = lfs_tole32(d->attrs_size); // d->name_size = lfs_tole32(d->name_size); //} /// Other struct functions /// //static inline lfs_size_t lfs_entry_elen(const lfs_mattr_t *attr) { // return (lfs_size_t)(attr->d.elen) | // ((lfs_size_t)(attr->d.alen & 0xc0) << 2); //} // //static inline lfs_size_t lfs_entry_alen(const lfs_mattr_t *attr) { // return attr->d.alen & 0x3f; //} // //static inline lfs_size_t lfs_entry_nlen(const lfs_mattr_t *attr) { // return attr->d.nlen; //} // //static inline lfs_size_t lfs_entry_size(const lfs_mattr_t *attr) { // return 4 + lfs_entry_elen(attr) + // lfs_entry_alen(attr) + // lfs_entry_nlen(attr); //} /// Metadata pair and directory operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pairisnull(const lfs_block_t pair[2]) { return pair[0] == 0xffffffff || pair[1] == 0xffffffff; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !(paira[0] == pairb[0] || paira[1] == pairb[1] || paira[0] == pairb[1] || paira[1] == pairb[0]); } static inline bool lfs_pairsync( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return (paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0]); } /// Entry tag operations /// static inline lfs_tag_t lfs_mktag( uint16_t type, uint16_t id, lfs_size_t size) { return (type << 22) | (id << 12) | size; } static inline bool lfs_tag_valid(lfs_tag_t tag) { return !(tag & 0x80000000); } static inline uint16_t lfs_tag_type(lfs_tag_t tag) { return (tag & 0x7fc00000) >> 22; } static inline uint8_t lfs_tag_supertype(lfs_tag_t tag) { return (tag & 0x70000000) >> 22; } static inline uint8_t lfs_tag_subtype(lfs_tag_t tag) { return (tag & 0x7c000000) >> 22; } static inline uint8_t lfs_tag_struct(lfs_tag_t tag) { return (tag & 0x03c00000) >> 22; } static inline uint16_t lfs_tag_id(lfs_tag_t tag) { return (tag & 0x001ff000) >> 12; } static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) { return tag & 0x00000fff; } struct lfs_commit { lfs_block_t block; lfs_off_t off; lfs_off_t begin; lfs_off_t end; lfs_tag_t ptag; uint32_t crc; struct { uint16_t begin; uint16_t end; } filter; }; // TODO predelcare static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit, uint16_t fromid, uint16_t toid, lfs_dir_t *dir, lfs_mattrlist_t *list); static int lfs_commit_commit(lfs_t *lfs, struct lfs_commit *commit, lfs_mattr_t attr) { // filter out ids if (lfs_tag_id(attr.tag) != 0x1ff && ( lfs_tag_id(attr.tag) < commit->filter.begin || lfs_tag_id(attr.tag) >= commit->filter.end)) { return 0; } // special cases if ((lfs_tag_type(attr.tag) & 0x103) == LFS_FROM_MOVE) { return lfs_commit_move(lfs, commit, lfs_tag_size(attr.tag), lfs_tag_id(attr.tag), attr.u.dir, NULL); } uint16_t id = lfs_tag_id(attr.tag) - commit->filter.begin; attr.tag = lfs_mktag(0, id, 0) | (attr.tag & 0xffe00fff); // check if we fit lfs_size_t size = lfs_tag_size(attr.tag); if (commit->off + sizeof(lfs_tag_t)+size > commit->end) { return LFS_ERR_NOSPC; } // write out tag // TODO rm me //printf("tag w %#010x (%x:%x %03x %03x %03x)\n", attr.tag, commit->block, commit->off+sizeof(lfs_tag_t), lfs_tag_type(attr.tag), lfs_tag_id(attr.tag), lfs_tag_size(attr.tag)); lfs_tag_t tag = lfs_tole32((attr.tag & 0x7fffffff) ^ commit->ptag); lfs_crc(&commit->crc, &tag, sizeof(tag)); int err = lfs_bd_prog(lfs, commit->block, commit->off, &tag, sizeof(tag)); if (err) { return err; } commit->off += sizeof(tag); if (!(attr.tag & 0x80000000)) { // from memory lfs_crc(&commit->crc, attr.u.buffer, size); err = lfs_bd_prog(lfs, commit->block, commit->off, attr.u.buffer, size); if (err) { return err; } } else { // from disk for (lfs_off_t i = 0; i < size; i++) { uint8_t dat; int err = lfs_bd_read(lfs, attr.u.d.block, attr.u.d.off+i, &dat, 1); if (err) { return err; } lfs_crc(&commit->crc, &dat, 1); err = lfs_bd_prog(lfs, commit->block, commit->off+i, &dat, 1); if (err) { return err; } } } commit->off += size; commit->ptag = attr.tag & 0x7fffffff; // TODO do this once return 0; } static int lfs_commit_crc(lfs_t *lfs, struct lfs_commit *commit) { // align to program units lfs_off_t noff = lfs_alignup( commit->off + 2*sizeof(uint32_t), lfs->cfg->prog_size); // read erased state from next program unit lfs_tag_t tag; int err = lfs_bd_read(lfs, commit->block, noff, &tag, sizeof(tag)); if (err) { return err; } // build crc tag tag = (0x80000000 & ~lfs_fromle32(tag)) | lfs_mktag(LFS_TYPE_CRC, 0x1ff, noff - (commit->off+sizeof(uint32_t))); // write out crc //printf("tag w %#010x (%x:%x %03x %03x %03x)\n", tag, commit->block, commit->off+sizeof(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag)); uint32_t footer[2]; footer[0] = lfs_tole32(tag ^ commit->ptag); lfs_crc(&commit->crc, &footer[0], sizeof(footer[0])); footer[1] = lfs_tole32(commit->crc); err = lfs_bd_prog(lfs, commit->block, commit->off, footer, sizeof(footer)); if (err) { return err; } commit->off += sizeof(tag)+lfs_tag_size(tag); commit->ptag = tag; // flush buffers err = lfs_bd_sync(lfs); if (err) { return err; } // successful commit, check checksum to make sure uint32_t crc = 0xffffffff; err = lfs_bd_crc(lfs, commit->block, commit->begin, commit->off-lfs_tag_size(tag) - commit->begin, &crc); if (err) { return err; } if (crc != commit->crc) { return LFS_ERR_CORRUPT; } return 0; } static int lfs_commit_list(lfs_t *lfs, struct lfs_commit *commit, lfs_mattrlist_t *list) { for (; list; list = list->next) { int err = lfs_commit_commit(lfs, commit, list->e); if (err) { return err; } } return 0; } // committer for moves // TODO rename? struct lfs_commit_move { lfs_dir_t *dir; // TODO need dir? struct { uint16_t from; uint16_t to; } id; struct lfs_commit *commit; }; // TODO redeclare static int lfs_dir_traverse(lfs_t *lfs, lfs_dir_t *dir, int (*cb)(lfs_t *lfs, void *data, lfs_mattr_t attr), void *data); static int lfs_dir_get(lfs_t *lfs, lfs_dir_t *dir, uint32_t mask, lfs_mattr_t *attr); static int lfs_commit_movescan(lfs_t *lfs, void *p, lfs_mattr_t attr) { struct lfs_commit_move *move = p; if (lfs_tag_type(attr.tag) == LFS_TYPE_DELETE && lfs_tag_id(attr.tag) <= move->id.from) { // something was deleted, we need to move around it move->id.from += 1; return 0; } if (lfs_tag_type(attr.tag) == LFS_TYPE_MOVE) { // TODO need this? // ignore moves return 0; } if (lfs_tag_id(attr.tag) != move->id.from) { // ignore non-matching ids return 0; } // check if type has already been committed int err = lfs_dir_get(lfs, &(lfs_dir_t){ .pair[0]=move->commit->block, .off=move->commit->off, .etag=move->commit->ptag, .stop_at_commit=true}, lfs_tag_type(attr.tag) & 0x100 ? 0x7ffff000 : 0x7c1ff000, &(lfs_mattr_t){ lfs_mktag(lfs_tag_type(attr.tag), move->id.to - move->commit->filter.begin, 0)}); // TODO can all these filter adjustments be consolidated? if (err && err != LFS_ERR_NOENT) { return err; } if (err != LFS_ERR_NOENT) { // already committed return 0; } // update id and commit, as we are currently unique attr.tag = lfs_mktag(0, move->id.to, 0) | (attr.tag & 0xffe00fff); return lfs_commit_commit(lfs, move->commit, attr); } static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit, uint16_t fromid, uint16_t toid, lfs_dir_t *dir, lfs_mattrlist_t *list) { struct lfs_commit_move move = { .id.from = fromid, .id.to = toid, .commit = commit, }; for (; list; list = list->next) { int err = lfs_commit_movescan(lfs, &move, list->e); if (err) { return err; } } int err = lfs_dir_traverse(lfs, dir, lfs_commit_movescan, &move); if (err) { return err; } return 0; } static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir, bool split, const lfs_block_t tail[2]) { // allocate pair of dir blocks (backwards, so we write to block 1 first) for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]); if (err) { return err; } } // rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->rev, 4); dir->rev = lfs_fromle32(dir->rev); if (err) { return err; } // set defaults dir->off = sizeof(dir->rev); dir->etag = 0; dir->count = 0; dir->tail[0] = tail[0]; dir->tail[1] = tail[1]; dir->erased = false; dir->split = split; // don't write out yet, let caller take care of that return 0; } static int lfs_dir_fetchwith(lfs_t *lfs, lfs_dir_t *dir, const lfs_block_t pair[2], int (*cb)(lfs_t *lfs, void *data, lfs_mattr_t attr), void *data) { dir->pair[0] = pair[0]; dir->pair[1] = pair[1]; dir->stop_at_commit = false; // find the block with the most recent revision uint32_t rev[2]; for (int i = 0; i < 2; i++) { int err = lfs_bd_read(lfs, dir->pair[i], 0, &rev[i], sizeof(rev[i])); rev[i] = lfs_fromle32(rev[i]); if (err) { return err; } } if (lfs_scmp(rev[1], rev[0]) > 0) { lfs_pairswap(dir->pair); lfs_pairswap(rev); } // load blocks and check crc for (int i = 0; i < 2; i++) { lfs_off_t off = sizeof(dir->rev); lfs_tag_t ptag = 0; uint32_t crc = 0xffffffff; dir->tail[0] = 0xffffffff; dir->tail[1] = 0xffffffff; dir->count = 0; dir->split = false; dir->moveid = -1; dir->rev = lfs_tole32(rev[0]); lfs_crc(&crc, &dir->rev, sizeof(dir->rev)); dir->rev = lfs_fromle32(dir->rev); lfs_dir_t temp = *dir; while (true) { // extract next tag lfs_tag_t tag; int err = lfs_bd_read(lfs, temp.pair[0], off, &tag, sizeof(tag)); if (err) { return err; } lfs_crc(&crc, &tag, sizeof(tag)); tag = lfs_fromle32(tag) ^ ptag; // next commit not yet programmed if (lfs_tag_type(ptag) == LFS_TYPE_CRC && !lfs_tag_valid(tag)) { dir->erased = true; return 0; } // check we're in valid range if (off + sizeof(tag)+lfs_tag_size(tag) > lfs->cfg->block_size) { break; } //printf("tag r %#010x (%x:%x %03x %03x %03x)\n", tag, temp.pair[0], off+sizeof(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag)); if (lfs_tag_type(tag) == LFS_TYPE_CRC) { // check the crc attr uint32_t dcrc; int err = lfs_bd_read(lfs, temp.pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc)); if (err) { return err; } if (crc != lfs_fromle32(dcrc)) { if (off == sizeof(temp.rev)) { // try other block break; } else { // consider what we have good enough dir->erased = false; return 0; } } temp.off = off + sizeof(tag)+lfs_tag_size(tag); temp.etag = tag; crc = 0xffffffff; *dir = temp; } else { err = lfs_bd_crc(lfs, temp.pair[0], off+sizeof(tag), lfs_tag_size(tag), &crc); if (err) { return err; } if (lfs_tag_type(tag) == LFS_TYPE_SOFTTAIL || lfs_tag_type(tag) == LFS_TYPE_HARDTAIL) { temp.split = lfs_tag_type(tag) == LFS_TYPE_HARDTAIL; err = lfs_bd_read(lfs, temp.pair[0], off+sizeof(tag), temp.tail, sizeof(temp.tail)); if (err) { return err; } } else if (lfs_tag_type(tag) == LFS_TYPE_MOVE) { // TODO handle moves correctly? temp.moveid = lfs_tag_id(tag); } else { if (lfs_tag_id(tag) < 0x1ff && lfs_tag_id(tag) >= temp.count) { temp.count = lfs_tag_id(tag)+1; } if (lfs_tag_type(tag) == LFS_TYPE_DELETE) { temp.count -= 1; if (temp.moveid != -1) { //printf("RENAME DEL %d (%d)\n", lfs_tag_id(tag), temp.moveid); } if (lfs_tag_id(tag) == temp.moveid) { temp.moveid = -1; } else if (lfs_tag_id(tag) < temp.moveid) { temp.moveid -= 1; } } if (cb) { err = cb(lfs, data, (lfs_mattr_t){ (tag | 0x80000000), .u.d.block=temp.pair[0], .u.d.off=off+sizeof(tag)}); if (err) { return err; } } } } ptag = tag; off += sizeof(tag)+lfs_tag_size(tag); } // failed, try the other crc? lfs_pairswap(dir->pair); lfs_pairswap(rev); } LFS_ERROR("Corrupted dir pair at %d %d", dir->pair[0], dir->pair[1]); return LFS_ERR_CORRUPT; } static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, const lfs_block_t pair[2]) { return lfs_dir_fetchwith(lfs, dir, pair, NULL, NULL); } static int lfs_dir_traverse(lfs_t *lfs, lfs_dir_t *dir, int (*cb)(lfs_t *lfs, void *data, lfs_mattr_t attr), void *data) { // iterate over dir block backwards (for faster lookups) lfs_block_t block = dir->pair[0]; lfs_off_t off = dir->off; lfs_tag_t tag = dir->etag; while (off != sizeof(uint32_t)) { // TODO rm me //printf("tag r %#010x (%x:%x %03x %03x %03x)\n", tag, block, off-lfs_tag_size(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag)); // TODO hmm if (dir->stop_at_commit && lfs_tag_type(tag) == LFS_TYPE_CRC) { break; } int err = cb(lfs, data, (lfs_mattr_t){ (0x80000000 | tag), .u.d.block=block, .u.d.off=off-lfs_tag_size(tag)}); if (err) { return err; } LFS_ASSERT(off > sizeof(tag)+lfs_tag_size(tag)); off -= sizeof(tag)+lfs_tag_size(tag); lfs_tag_t ntag; err = lfs_bd_read(lfs, block, off, &ntag, sizeof(ntag)); if (err) { return err; } tag ^= lfs_fromle32(ntag); } return 0; } static int lfs_dir_compact(lfs_t *lfs, lfs_dir_t *dir, lfs_mattrlist_t *list, lfs_dir_t *source, uint16_t begin, uint16_t end) { // save some state in case block is bad const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]}; bool relocated = false; // increment revision count dir->rev += 1; while (true) { // last complete id int16_t ack = -1; dir->count = end - begin; if (true) { // erase block to write to int err = lfs_bd_erase(lfs, dir->pair[1]); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // write out header uint32_t crc = 0xffffffff; uint32_t rev = lfs_tole32(dir->rev); lfs_crc(&crc, &rev, sizeof(rev)); err = lfs_bd_prog(lfs, dir->pair[1], 0, &rev, sizeof(rev)); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // setup compaction struct lfs_commit commit = { .block = dir->pair[1], .off = sizeof(dir->rev), // space is complicated, we need room for tail, crc, // and we keep cap at around half a block .begin = 0, .end = lfs_min( lfs_alignup(lfs->cfg->block_size / 2, lfs->cfg->prog_size), lfs->cfg->block_size - 5*sizeof(uint32_t)), .crc = crc, .ptag = 0, // filter out ids .filter.begin = begin, .filter.end = end, }; // commit with a move for (uint16_t id = begin; id < end; id++) { err = lfs_commit_move(lfs, &commit, id, id, source, list); if (err) { if (err == LFS_ERR_NOSPC) { goto split; } else if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } ack = id; } commit.end = lfs->cfg->block_size - 2*sizeof(uint32_t); if (!lfs_pairisnull(dir->tail)) { // TODO le32 err = lfs_commit_commit(lfs, &commit, (lfs_mattr_t){ lfs_mktag(LFS_TYPE_SOFTTAIL + dir->split*0x10, 0x1ff, sizeof(dir->tail)), .u.buffer=dir->tail}); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } err = lfs_commit_crc(lfs, &commit); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // successful compaction, swap dir pair to indicate most recent lfs_pairswap(dir->pair); dir->off = commit.off; dir->etag = commit.ptag; dir->erased = true; } break; split: // commit no longer fits, need to split dir, // drop caches and create tail lfs->pcache.block = 0xffffffff; lfs_dir_t tail; int err = lfs_dir_alloc(lfs, &tail, dir->split, dir->tail); if (err) { return err; } err = lfs_dir_compact(lfs, &tail, list, dir, ack+1, end); if (err) { return err; } end = ack+1; dir->tail[0] = tail.pair[0]; dir->tail[1] = tail.pair[1]; dir->split = true; continue; relocate: //commit was corrupted LFS_DEBUG("Bad block at %d", dir->pair[1]); // drop caches and prepare to relocate block relocated = true; lfs->pcache.block = 0xffffffff; // can't relocate superblock, filesystem is now frozen if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) { LFS_WARN("Superblock %d has become unwritable", oldpair[1]); return LFS_ERR_CORRUPT; } // relocate half of pair err = lfs_alloc(lfs, &dir->pair[1]); if (err) { return err; } continue; } if (relocated) { // update references if we relocated LFS_DEBUG("Relocating %d %d to %d %d", oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]); int err = lfs_relocate(lfs, oldpair, dir->pair); if (err) { return err; } } return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir, lfs_mattrlist_t *list) { while (true) { if (!dir->erased) { // not erased, must compact goto compact; } struct lfs_commit commit = { .block = dir->pair[0], .begin = dir->off, .off = dir->off, .end = lfs->cfg->block_size - 2*sizeof(uint32_t), .crc = 0xffffffff, .ptag = dir->etag, .filter.begin = 0, .filter.end = 0x1ff, }; int err = lfs_commit_list(lfs, &commit, list); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } err = lfs_commit_crc(lfs, &commit); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } // successful commit, lets update dir dir->off = commit.off; dir->etag = commit.ptag; break; compact: lfs->pcache.block = 0xffffffff; err = lfs_dir_compact(lfs, dir, list, dir, 0, dir->count); if (err) { return err; } break; } // TODO combine with above? // update any directories that are affected for (lfs_dir_t *d = lfs->dirs; d; d = d->next) { if (lfs_paircmp(d->pair, dir->pair) == 0) { d->pair[0] = dir->pair[0]; d->pair[1] = dir->pair[1]; d->tail[0] = dir->tail[0]; d->tail[1] = dir->tail[1]; d->rev = dir->rev; d->off = dir->off; d->etag = dir->etag; d->count = dir->count; d->erased = dir->erased; d->split = dir->split; d->moveid = dir->moveid; // TODO hm this is a bit much } } return 0; } static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir, uint16_t *id) { *id = dir->count; dir->count += 1; return 0; } static int lfs_dir_delete(lfs_t *lfs, lfs_dir_t *dir, uint16_t id) { dir->count -= 1; // check if we should drop the directory block if (dir->count == 0) { lfs_dir_t pdir; int res = lfs_pred(lfs, dir->pair, &pdir); if (res < 0) { return res; } if (res && pdir.split) { pdir.split = dir->split; pdir.tail[0] = dir->tail[0]; pdir.tail[1] = dir->tail[1]; int err = lfs_dir_commit(lfs, &pdir, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SOFTTAIL + pdir.split*0x10, 0x1ff, sizeof(pdir.tail)), .u.buffer=pdir.tail}}); return err; } } int err = lfs_dir_commit(lfs, dir, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_DELETE, id, 0)}}); if (err) { return err; } // shift over any files that are affected // TODO move this to dir_commit? // TODO use entries??? for (lfs_dir_t *d = lfs->dirs; d; d = d->next) { if (lfs_paircmp(d->pair, dir->pair) == 0) { if (d->id > id) { d->id -= 1; d->pos -= 1; } } } for (lfs_file_t *f = lfs->files; f; f = f->next) { if (lfs_paircmp(f->pair, dir->pair) == 0) { if (f->id == id) { f->pair[0] = 0xffffffff; f->pair[1] = 0xffffffff; } else if (f->id > id) { f->id -= 1; } } } return 0; } struct lfs_dir_getter { uint32_t mask; lfs_tag_t tag; lfs_mattr_t *attr; }; static int lfs_dir_getter(lfs_t *lfs, void *p, lfs_mattr_t attr) { struct lfs_dir_getter *get = p; if ((attr.tag & get->mask) == (get->tag & get->mask)) { *get->attr = attr; return true; } else if (lfs_tag_type(attr.tag) == LFS_TYPE_DELETE) { if (lfs_tag_id(attr.tag) <= lfs_tag_id(get->tag)) { get->tag += lfs_mktag(0, 1, 0); } } return false; } static int lfs_dir_get(lfs_t *lfs, lfs_dir_t *dir, uint32_t mask, lfs_mattr_t *attr) { uint16_t id = lfs_tag_id(attr->tag); int res = lfs_dir_traverse(lfs, dir, lfs_dir_getter, &(struct lfs_dir_getter){mask, attr->tag, attr}); if (res < 0) { return res; } if (!res) { return LFS_ERR_NOENT; } // TODO hmm, stop at commit? maybe we need to handle this elsewhere? // Should commit get be its own thing? commit traverse? if (id == dir->moveid && !dir->stop_at_commit) { int moved = lfs_moved(lfs, dir, dir->moveid); if (moved < 0) { return moved; } if (moved) { return LFS_ERR_NOENT; } } attr->tag = lfs_mktag(0, id, 0) | (attr->tag & 0xffe00fff); return 0; } static int lfs_dir_getbuffer(lfs_t *lfs, lfs_dir_t *dir, uint32_t mask, lfs_mattr_t *attr) { void *buffer = attr->u.buffer; lfs_size_t size = lfs_tag_size(attr->tag); int err = lfs_dir_get(lfs, dir, mask, attr); if (err) { return err; } lfs_size_t diff = lfs_min(size, lfs_tag_size(attr->tag)); memset((uint8_t*)buffer + diff, 0, size - diff); err = lfs_bd_read(lfs, attr->u.d.block, attr->u.d.off, buffer, diff); if (err) { return err; } if (lfs_tag_size(attr->tag) > size) { return LFS_ERR_RANGE; } return 0; } static int lfs_dir_getentry(lfs_t *lfs, lfs_dir_t *dir, uint32_t mask, lfs_tag_t tag, lfs_mattr_t *attr) { attr->tag = tag | sizeof(attr->u); attr->u.buffer = &attr->u; int err = lfs_dir_getbuffer(lfs, dir, mask, attr); if (err && err != LFS_ERR_RANGE) { return err; } return 0; } static int lfs_dir_getinfo(lfs_t *lfs, lfs_dir_t *dir, int16_t id, struct lfs_info *info) { if (id < 0) { // special case for root strcpy(info->name, "/"); info->type = LFS_TYPE_DIR; return 0; } if (id == dir->moveid) { int moved = lfs_moved(lfs, dir, dir->moveid); if (moved < 0) { return moved; } if (moved) { return LFS_ERR_NOENT; } } lfs_mattr_t attr; int err = lfs_dir_getentry(lfs, dir, 0x701ff000, lfs_mktag(LFS_TYPE_REG, id, 0), &attr); if (err) { return err; } info->type = lfs_tag_subtype(attr.tag); if (lfs_tag_type(attr.tag) == (LFS_TYPE_REG | LFS_STRUCT_CTZ)) { info->size = attr.u.ctz.size; } else if (lfs_tag_type(attr.tag) == (LFS_TYPE_REG | LFS_STRUCT_INLINE)) { info->size = lfs_tag_size(attr.tag); } err = lfs_dir_getbuffer(lfs, dir, 0x7ffff000, &(lfs_mattr_t){ lfs_mktag(LFS_TYPE_NAME, id, lfs->name_size+1), .u.buffer=info->name}); if (err) { return err; } return 0; } struct lfs_dir_finder { const char *name; uint16_t len; int16_t id; }; static int lfs_dir_finder(lfs_t *lfs, void *p, lfs_mattr_t attr) { struct lfs_dir_finder *find = p; if (lfs_tag_type(attr.tag) == LFS_TYPE_NAME && lfs_tag_size(attr.tag) == find->len) { int res = lfs_bd_cmp(lfs, attr.u.d.block, attr.u.d.off, find->name, find->len); if (res < 0) { return res; } if (res) { // found a match find->id = lfs_tag_id(attr.tag); } } else if (lfs_tag_type(attr.tag) == LFS_TYPE_DELETE) { if (lfs_tag_id(attr.tag) == find->id) { find->id = -1; } else if (lfs_tag_id(attr.tag) < find->id) { find->id -= 1; } } return 0; } // TODO drop others, make this only return id, also make get take in only entry to populate (with embedded tag) static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir, const char **path, int16_t *id) { lfs_mattr_t attr = { .u.pair[0] = lfs->root[0], .u.pair[1] = lfs->root[1], }; struct lfs_dir_finder find = { .name = *path, }; while (true) { nextname: // skip slashes find.name += strspn(find.name, "/"); find.len = strcspn(find.name, "/"); // special case for root dir if (find.name[0] == '\0') { // TODO set up root? *id = -1; return 0; } // skip '.' and root '..' if ((find.len == 1 && memcmp(find.name, ".", 1) == 0) || (find.len == 2 && memcmp(find.name, "..", 2) == 0)) { find.name += find.len; goto nextname; } // skip if matched by '..' in name const char *suffix = find.name + find.len; lfs_size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { find.name = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // update what we've found *path = find.name; // find path while (true) { //printf("checking %d %d for %s\n", attr.u.pair[0], attr.u.pair[1], *path); find.id = -1; int err = lfs_dir_fetchwith(lfs, dir, attr.u.pair, lfs_dir_finder, &find); if (err) { return err; } if (find.id >= 0) { // found it break; } if (!dir->split) { return LFS_ERR_NOENT; } attr.u.pair[0] = dir->tail[0]; attr.u.pair[1] = dir->tail[1]; } if (find.id == dir->moveid) { int moved = lfs_moved(lfs, dir, dir->moveid); if (moved < 0) { return moved; } if (moved) { return LFS_ERR_NOENT; } } *id = find.id; find.name += find.len; find.name += strspn(find.name, "/"); if (find.name[0] == '\0') { return 0; } // TODO optimize grab for inline files and like? // TODO would this mean more code? // grab the entry data int err = lfs_dir_getentry(lfs, dir, 0x701ff000, lfs_mktag(LFS_TYPE_REG, find.id, 0), &attr); if (err) { return err; } // continue on if we hit a directory // TODO update with what's on master? if (lfs_tag_subtype(attr.tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } } } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } lfs_dir_t cwd; int err = lfs_dir_find(lfs, &cwd, &path, &(int16_t){0}); if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) { if (!err) { return LFS_ERR_EXIST; } return err; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // build up new directory lfs_alloc_ack(lfs); lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir, false, cwd.tail); if (err) { return err; } err = lfs_dir_commit(lfs, &dir, NULL); if (err) { return err; } // get next slot and commit uint16_t id; err = lfs_dir_append(lfs, &cwd, &id); if (err) { return err; } cwd.tail[0] = dir.pair[0]; cwd.tail[1] = dir.pair[1]; err = lfs_dir_commit(lfs, &cwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_NAME, id, nlen), .u.buffer=(void*)path}, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_DIR | LFS_STRUCT_DIR, id, sizeof(dir.pair)), .u.buffer=dir.pair}, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SOFTTAIL, 0x1ff, sizeof(cwd.tail)), .u.buffer=cwd.tail}}}}); // TODO need ack here? lfs_alloc_ack(lfs); return 0; } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { int16_t id; int err = lfs_dir_find(lfs, dir, &path, &id); if (err) { return err; } lfs_mattr_t attr; if (id < 0) { // handle root dir separately attr.u.pair[0] = lfs->root[0]; attr.u.pair[1] = lfs->root[1]; } else { // get dir pair from parent err = lfs_dir_getentry(lfs, dir, 0x701ff000, lfs_mktag(LFS_TYPE_REG, id, 0), &attr); if (err) { return err; } if (lfs_tag_subtype(attr.tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } } // fetch first pair err = lfs_dir_fetch(lfs, dir, attr.u.pair); if (err) { return err; } // setup entry dir->head[0] = dir->pair[0]; dir->head[1] = dir->pair[1]; dir->id = 0; dir->pos = 0; // add to list of directories dir->next = lfs->dirs; lfs->dirs = dir; return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // remove from list of directories for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) { if (*p == dir) { *p = dir->next; break; } } return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); // special offset for '.' and '..' if (dir->pos == 0) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->pos += 1; return 1; } else if (dir->pos == 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->pos += 1; return 1; } while (true) { if (dir->id == dir->count) { if (!dir->split) { return false; } int err = lfs_dir_fetch(lfs, dir, dir->tail); if (err) { return err; } dir->id = 0; } int err = lfs_dir_getinfo(lfs, dir, dir->id, info); if (err && err != LFS_ERR_NOENT) { return err; } dir->id += 1; if (err != LFS_ERR_NOENT) { break; } } dir->pos += 1; return true; } // TODO does this work? int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) { // simply walk from head dir int err = lfs_dir_rewind(lfs, dir); if (err) { return err; } // first two for ./.. dir->pos = lfs_min(2, off); off -= dir->pos; while (off != 0) { dir->id = lfs_min(dir->count, off); dir->pos += dir->id; off -= dir->id; if (dir->id == dir->count) { if (!dir->split) { return LFS_ERR_INVAL; } int err = lfs_dir_fetch(lfs, dir, dir->tail); if (err) { return err; } } } return 0; } lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) { (void)lfs; return dir->pos; } int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) { // reload the head dir int err = lfs_dir_fetch(lfs, dir, dir->head); if (err) { return err; } dir->pair[0] = dir->head[0]; dir->pair[1] = dir->head[1]; dir->id = 0; dir->pos = 0; return 0; } /// File index list operations /// static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) { lfs_off_t size = *off; lfs_off_t b = lfs->cfg->block_size - 2*4; lfs_off_t i = size / b; if (i == 0) { return 0; } i = (size - 4*(lfs_popc(i-1)+2)) / b; *off = size - b*i - 4*lfs_popc(i); return i; } static int lfs_ctz_find(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) { if (size == 0) { *block = 0xffffffff; *off = 0; return 0; } lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); lfs_off_t target = lfs_ctz_index(lfs, &pos); while (current > target) { lfs_size_t skip = lfs_min( lfs_npw2(current-target+1) - 1, lfs_ctz(current)); int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4); head = lfs_fromle32(head); if (err) { return err; } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); current -= 1 << skip; } *block = head; *off = pos; return 0; } static int lfs_ctz_extend(lfs_t *lfs, lfs_cache_t *rcache, lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, lfs_block_t *block, lfs_off_t *off) { while (true) { // go ahead and grab a block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count); if (true) { err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (size == 0) { *block = nblock; *off = 0; return 0; } size -= 1; lfs_off_t index = lfs_ctz_index(lfs, &size); size += 1; // just copy out the last block if it is incomplete if (size != lfs->cfg->block_size) { for (lfs_off_t i = 0; i < size; i++) { uint8_t data; err = lfs_cache_read(lfs, rcache, NULL, head, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, pcache, rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } *block = nblock; *off = size; return 0; } // append block index += 1; lfs_size_t skips = lfs_ctz(index) + 1; for (lfs_off_t i = 0; i < skips; i++) { head = lfs_tole32(head); err = lfs_cache_prog(lfs, pcache, rcache, nblock, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (i != skips-1) { err = lfs_cache_read(lfs, rcache, NULL, head, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { return err; } } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); } *block = nblock; *off = 4*skips; return 0; } relocate: LFS_DEBUG("Bad block at %d", nblock); // just clear cache and try a new block pcache->block = 0xffffffff; } } static int lfs_ctz_traverse(lfs_t *lfs, lfs_cache_t *rcache, const lfs_cache_t *pcache, lfs_block_t head, lfs_size_t size, int (*cb)(lfs_t*, void*, lfs_block_t), void *data) { if (size == 0) { return 0; } lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); while (true) { int err = cb(lfs, data, head); if (err) { return err; } if (index == 0) { return 0; } lfs_block_t heads[2]; int count = 2 - (index & 1); err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4); heads[0] = lfs_fromle32(heads[0]); heads[1] = lfs_fromle32(heads[1]); if (err) { return err; } for (int i = 0; i < count-1; i++) { err = cb(lfs, data, heads[i]); if (err) { return err; } } head = heads[count-1]; index -= count; } } /// Top level file operations /// int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { // deorphan if we haven't yet, needed at most once after poweron if ((flags & 3) != LFS_O_RDONLY && !lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } // allocate entry for file if it doesn't exist lfs_dir_t cwd; int16_t id; int err = lfs_dir_find(lfs, &cwd, &path, &id); if (err && (err != LFS_ERR_NOENT || strchr(path, '/') != NULL)) { return err; } lfs_mattr_t attr; if (err == LFS_ERR_NOENT) { if (!(flags & LFS_O_CREAT)) { return LFS_ERR_NOENT; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // get next slot and create entry to remember name err = lfs_dir_append(lfs, &cwd, &id); if (err) { return err; } // TODO do we need to make file registered to list to catch updates from this commit? ie if id/cwd change err = lfs_dir_commit(lfs, &cwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_NAME, id, nlen), .u.buffer=(void*)path}, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, id, 0)}}}); if (err) { return err; } // TODO eh if (id >= cwd.count) { // catch updates from a compact in the above commit id -= cwd.count; cwd.pair[0] = cwd.tail[0]; cwd.pair[1] = cwd.tail[1]; } attr.tag = lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, id, 0); } else { if (id == -1) { return LFS_ERR_ISDIR; } else if (flags & LFS_O_EXCL) { return LFS_ERR_EXIST; } attr.tag = lfs_mktag(LFS_TYPE_REG, id, 0); err = lfs_dir_get(lfs, &cwd, 0x701ff000, &attr); if (err) { return err; } if (lfs_tag_subtype(attr.tag) != LFS_TYPE_REG) { return LFS_ERR_ISDIR; } } // setup file struct file->pair[0] = cwd.pair[0]; file->pair[1] = cwd.pair[1]; file->id = id; file->flags = flags; file->pos = 0; file->attrs = NULL; // allocate buffer if needed file->cache.block = 0xffffffff; if (lfs->cfg->file_buffer) { file->cache.buffer = lfs->cfg->file_buffer; } else if ((file->flags & 3) == LFS_O_RDONLY) { file->cache.buffer = lfs_malloc(lfs->cfg->read_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } else { file->cache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!file->cache.buffer) { return LFS_ERR_NOMEM; } } if (lfs_tag_struct(attr.tag) == LFS_STRUCT_INLINE) { // load inline files file->head = 0xfffffffe; file->size = lfs_tag_size(attr.tag); file->flags |= LFS_F_INLINE; file->cache.block = file->head; file->cache.off = 0; // don't always read (may be new file) if (file->size > 0) { err = lfs_bd_read(lfs, attr.u.d.block, attr.u.d.off, file->cache.buffer, file->size); if (err) { lfs_free(file->cache.buffer); return err; } } } else { // use ctz list from entry err = lfs_bd_read(lfs, attr.u.d.block, attr.u.d.off, &file->head, 2*sizeof(uint32_t)); } // truncate if requested if (flags & LFS_O_TRUNC) { if (file->size != 0) { file->flags |= LFS_F_DIRTY; } file->head = 0xfffffffe; file->size = 0; file->flags |= LFS_F_INLINE; file->cache.block = file->head; file->cache.off = 0; } // add to list of files file->next = lfs->files; lfs->files = file; return 0; } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_sync(lfs, file); // remove from list of files for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) { if (*p == file) { *p = file->next; break; } } // clean up memory if (!lfs->cfg->file_buffer) { lfs_free(file->cache.buffer); } return err; } static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) { relocate:; // just relocate what exists into new block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // either read from dirty cache or disk for (lfs_off_t i = 0; i < file->off; i++) { uint8_t data; err = lfs_cache_read(lfs, &lfs->rcache, &file->cache, file->block, i, &data, 1); if (err) { return err; } err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } // copy over new state of file memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size); file->cache.block = lfs->pcache.block; file->cache.off = lfs->pcache.off; lfs->pcache.block = 0xffffffff; file->block = nblock; return 0; } static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) { if (file->flags & LFS_F_READING) { file->flags &= ~LFS_F_READING; } if (file->flags & LFS_F_WRITING) { lfs_off_t pos = file->pos; if (!(file->flags & LFS_F_INLINE)) { // copy over anything after current branch lfs_file_t orig = { .head = file->head, .size = file->size, .flags = LFS_O_RDONLY, .pos = file->pos, .cache = lfs->rcache, }; lfs->rcache.block = 0xffffffff; while (file->pos < file->size) { // copy over a byte at a time, leave it up to caching // to make this efficient uint8_t data; lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1); if (res < 0) { return res; } res = lfs_file_write(lfs, file, &data, 1); if (res < 0) { return res; } // keep our reference to the rcache in sync if (lfs->rcache.block != 0xffffffff) { orig.cache.block = 0xffffffff; lfs->rcache.block = 0xffffffff; } } // write out what we have while (true) { int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } break; relocate: LFS_DEBUG("Bad block at %d", file->block); err = lfs_file_relocate(lfs, file); if (err) { return err; } } } else { file->size = lfs_max(file->pos, file->size); } // actual file updates file->head = file->block; file->size = file->pos; file->flags &= ~LFS_F_WRITING; file->flags |= LFS_F_DIRTY; file->pos = pos; } return 0; } int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_flush(lfs, file); if (err) { return err; } if ((file->flags & LFS_F_DIRTY) && !(file->flags & LFS_F_ERRED) && !lfs_pairisnull(file->pair)) { // update dir entry // TODO keep list of dirs including these guys for no // need of another reload? lfs_dir_t cwd; err = lfs_dir_fetch(lfs, &cwd, file->pair); if (err) { return err; } // either update the references or inline the whole file if (!(file->flags & LFS_F_INLINE)) { int err = lfs_dir_commit(lfs, &cwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_CTZ, file->id, 2*sizeof(uint32_t)), .u.buffer=&file->head}, file->attrs}); if (err) { return err; } } else { int err = lfs_dir_commit(lfs, &cwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, file->id, file->size), .u.buffer=file->cache.buffer}, file->attrs}); if (err) { return err; } } file->flags &= ~LFS_F_DIRTY; } return 0; } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_WRONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_WRITING) { // flush out any writes int err = lfs_file_flush(lfs, file); if (err) { return err; } } if (file->pos >= file->size) { // eof if past end return 0; } size = lfs_min(size, file->size - file->pos); nsize = size; while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_READING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { int err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, file->pos, &file->block, &file->off); if (err) { return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_READING; } // read as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); int err = lfs_cache_read(lfs, &file->cache, NULL, file->block, file->off, data, diff); if (err) { return err; } file->pos += diff; file->off += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_READING) { // drop any reads int err = lfs_file_flush(lfs, file); if (err) { return err; } } if ((file->flags & LFS_O_APPEND) && file->pos < file->size) { file->pos = file->size; } if (!(file->flags & LFS_F_WRITING) && file->pos > file->size) { // fill with zeros lfs_off_t pos = file->pos; file->pos = file->size; while (file->pos < pos) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } } if ((file->flags & LFS_F_INLINE) && file->pos + nsize >= lfs->cfg->inline_size) { // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); int err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_WRITING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { if (!(file->flags & LFS_F_WRITING) && file->pos > 0) { // find out which block we're extending from int err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, file->pos-1, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } // mark cache as dirty since we may have read data into it file->cache.block = 0xffffffff; } // extend file with new blocks lfs_alloc_ack(lfs); int err = lfs_ctz_extend(lfs, &lfs->rcache, &file->cache, file->block, file->pos, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_WRITING; } // program as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); while (true) { int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache, file->block, file->off, data, diff); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } file->flags |= LFS_F_ERRED; return err; } break; relocate: err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } } file->pos += diff; file->off += diff; data += diff; nsize -= diff; lfs_alloc_ack(lfs); } file->flags &= ~LFS_F_ERRED; return size; } lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file, lfs_soff_t off, int whence) { // write out everything beforehand, may be noop if rdonly int err = lfs_file_flush(lfs, file); if (err) { return err; } // update pos if (whence == LFS_SEEK_SET) { file->pos = off; } else if (whence == LFS_SEEK_CUR) { if (off < 0 && (lfs_off_t)-off > file->pos) { return LFS_ERR_INVAL; } file->pos = file->pos + off; } else if (whence == LFS_SEEK_END) { if (off < 0 && (lfs_off_t)-off > file->size) { return LFS_ERR_INVAL; } file->pos = file->size + off; } return file->pos; } int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) { if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } lfs_off_t oldsize = lfs_file_size(lfs, file); if (size < oldsize) { // need to flush since directly changing metadata int err = lfs_file_flush(lfs, file); if (err) { return err; } // lookup new head in ctz skip list err = lfs_ctz_find(lfs, &file->cache, NULL, file->head, file->size, size, &file->head, &(lfs_off_t){0}); if (err) { return err; } file->size = size; file->flags |= LFS_F_DIRTY; } else if (size > oldsize) { lfs_off_t pos = file->pos; // flush+seek if not already at end if (file->pos != oldsize) { int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END); if (err < 0) { return err; } } // fill with zeros while (file->pos < size) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } // restore pos int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET); if (err < 0) { return err; } } return 0; } lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) { (void)lfs; return file->pos; } int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) { lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET); if (res < 0) { return res; } return 0; } lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) { (void)lfs; if (file->flags & LFS_F_WRITING) { return lfs_max(file->pos, file->size); } else { return file->size; } } //int lfs_file_getattrs(lfs_t *lfs, lfs_file_t *file, // const struct lfs_attr *attrs, int count) { // // set to null in case we can't find the attrs (missing file?) // for (int j = 0; j < count; j++) { // memset(attrs[j].buffer, 0, attrs[j].size); // } // // // load from disk if we haven't already been deleted // if (!lfs_pairisnull(file->pair)) { // lfs_dir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, file->pair); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = file->pairoff}; // err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // err = lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); // if (err) { // return err; // } // } // // // override an attrs we have stored locally // for (int i = 0; i < file->attrcount; i++) { // for (int j = 0; j < count; j++) { // if (attrs[j].type == file->attrs[i].type) { // if (attrs[j].size < file->attrs[i].size) { // return LFS_ERR_RANGE; // } // // memset(attrs[j].buffer, 0, attrs[j].size); // memcpy(attrs[j].buffer, // file->attrs[i].buffer, file->attrs[i].size); // } // } // } // // return 0; //} //int lfs_file_setattrs(lfs_t *lfs, lfs_file_t *file, // const struct lfs_attr *attrs, int count) { // if ((file->flags & 3) == LFS_O_RDONLY) { // return LFS_ERR_BADF; // } // // // at least make sure attributes fit // if (!lfs_pairisnull(file->pair)) { // lfs_dir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, file->pair); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = file->pairoff}; // err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // lfs_ssize_t res = lfs_dir_checkattrs(lfs, &cwd, &entry, attrs, count); // if (res < 0) { // return res; // } // } // // // just tack to the file, will be written at sync time // file->attrs = attrs; // file->attrcount = count; // file->flags |= LFS_F_DIRTY; // // return 0; //} /// General fs operations /// int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_dir_t cwd; int16_t id; int err = lfs_dir_find(lfs, &cwd, &path, &id); if (err) { return err; } return lfs_dir_getinfo(lfs, &cwd, id, info); } int lfs_remove(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } int16_t id; err = lfs_dir_find(lfs, &cwd, &path, &id); if (err) { return err; } // grab entry to see if we're dealing with a dir lfs_mattr_t attr; err = lfs_dir_getentry(lfs, &cwd, 0x701ff000, lfs_mktag(LFS_TYPE_REG, id, 0), &attr); if (err) { return err; } if (lfs_tag_subtype(attr.tag) == LFS_TYPE_DIR) { lfs_dir_t dir; // must be empty before removal err = lfs_dir_fetch(lfs, &dir, attr.u.pair); if (err) { return err; } if (dir.count > 0 || dir.split) { return LFS_ERR_NOTEMPTY; } } // delete the entry err = lfs_dir_delete(lfs, &cwd, id); if (err) { return err; } // if we were a directory, find pred, replace tail // TODO can this just deorphan? if (lfs_tag_subtype(attr.tag) == LFS_TYPE_DIR) { err = lfs_deorphan(lfs); if (err) { return err; } } // if (lfs_tag_subtype(attr.tag) == LFS_TYPE_DIR) { // int res = lfs_pred(lfs, dir.pair, &cwd); // if (res < 0) { // return res; // } // // LFS_ASSERT(res); // must have pred // cwd.tail[0] = dir.tail[0]; // cwd.tail[1] = dir.tail[1]; // // err = lfs_dir_commit(lfs, &cwd, NULL, 0); // if (err) { // return err; // } // } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // deorphan if we haven't yet, needed at most once after poweron if (!lfs->deorphaned) { int err = lfs_deorphan(lfs); if (err) { return err; } } // find old entry lfs_dir_t oldcwd; int16_t oldid; int err = lfs_dir_find(lfs, &oldcwd, &oldpath, &oldid); if (err) { return err; } // add to list so we catch updates if directories overlap lfs_mattr_t oldattr; err = lfs_dir_getentry(lfs, &oldcwd, 0x701ff000, lfs_mktag(LFS_TYPE_REG, oldid, 0), &oldattr); if (err) { return err; } // find new entry lfs_dir_t newcwd; int16_t newid; err = lfs_dir_find(lfs, &newcwd, &newpath, &newid); if (err && err != LFS_ERR_NOENT) { return err; } bool prevexists = (err != LFS_ERR_NOENT); bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0); lfs_mattr_t prevattr; if (prevexists) { // get prev entry, check that we have same type err = lfs_dir_getentry(lfs, &newcwd, 0x701ff000, lfs_mktag(LFS_TYPE_REG, newid, 0), &prevattr); if (err) { return err; } if (lfs_tag_subtype(prevattr.tag) != lfs_tag_subtype(oldattr.tag)) { return LFS_ERR_ISDIR; } if (lfs_tag_subtype(prevattr.tag) == LFS_TYPE_DIR) { lfs_dir_t prevdir; // must be empty before removal err = lfs_dir_fetch(lfs, &prevdir, prevattr.u.pair); if (err) { return err; } if (prevdir.count > 0 || prevdir.split) { return LFS_ERR_NOTEMPTY; } } } else { // check that name fits lfs_size_t nlen = strlen(newpath); if (nlen > lfs->name_size) { return LFS_ERR_NAMETOOLONG; } // get next id err = lfs_dir_append(lfs, &newcwd, &newid); if (err) { return err; } } // mark as moving //printf("RENAME MOVE %d %d %d\n", oldcwd.pair[0], oldcwd.pair[1], oldid); err = lfs_dir_commit(lfs, &oldcwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_MOVE, oldid, 0)}}); if (err) { return err; } if (samepair) { // update pair if newcwd == oldcwd newcwd = oldcwd; } // TODO check that all complaints are fixed // // move to new location // // TODO NAME????? // // TODO HAH, move doesn't want to override things (due // // to its use in compaction), but that's _exactly what we want here // err = lfs_dir_commitwith(lfs, &newcwd, lfs_commit_move, // &(struct lfs_commit_move){.dir=&oldcwd, .id={oldid, newid}}); // if (err) { // return err; // } // // TODO NONONONONO // // TODO also don't call strlen twice (see prev name check) // err = lfs_dir_commit(lfs, &newcwd, &(lfs_mattrlist_t){ // {lfs_mktag(LFS_TYPE_NAME, newid, strlen(newpath)), // .u.buffer=(void*)newpath}}); // if (err) { // return err; // } err = lfs_dir_commit(lfs, &newcwd, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_NAME, newid, strlen(newpath)), .u.buffer=(void*)newpath}, &(lfs_mattrlist_t){ {lfs_mktag(LFS_FROM_MOVE, newid, oldid), .u.dir=&oldcwd}}}); if (err) { return err; } if (samepair) { // update pair if newcwd == oldcwd oldcwd = newcwd; } // remove old entry //printf("RENAME DELETE %d %d %d\n", oldcwd.pair[0], oldcwd.pair[1], oldid); err = lfs_dir_delete(lfs, &oldcwd, oldid); if (err) { return err; } // if we were a directory, find pred, replace tail // TODO can this just deorphan? if (prevexists && lfs_tag_subtype(prevattr.tag) == LFS_TYPE_DIR) { err = lfs_deorphan(lfs); if (err) { return err; } } return 0; } //int lfs_getattrs(lfs_t *lfs, const char *path, // const struct lfs_attr *attrs, int count) { // lfs_dir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_find(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count); //} // //int lfs_setattrs(lfs_t *lfs, const char *path, // const struct lfs_attr *attrs, int count) { // lfs_dir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_find(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_setattrs(lfs, &cwd, &entry, attrs, count); //} /// Filesystem operations /// static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) { lfs->cfg = cfg; // setup read cache lfs->rcache.block = 0xffffffff; if (lfs->cfg->read_buffer) { lfs->rcache.buffer = lfs->cfg->read_buffer; } else { lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size); if (!lfs->rcache.buffer) { return LFS_ERR_NOMEM; } } // setup program cache lfs->pcache.block = 0xffffffff; if (lfs->cfg->prog_buffer) { lfs->pcache.buffer = lfs->cfg->prog_buffer; } else { lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size); if (!lfs->pcache.buffer) { return LFS_ERR_NOMEM; } } // setup lookahead, round down to nearest 32-bits LFS_ASSERT(lfs->cfg->lookahead % 32 == 0); LFS_ASSERT(lfs->cfg->lookahead > 0); if (lfs->cfg->lookahead_buffer) { lfs->free.buffer = lfs->cfg->lookahead_buffer; } else { lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8); if (!lfs->free.buffer) { return LFS_ERR_NOMEM; } } // check that program and read sizes are multiples of the block size LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0); LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0); // check that the block size is large enough to fit ctz pointers LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4)) <= lfs->cfg->block_size); // check that the size limits are sane LFS_ASSERT(lfs->cfg->inline_size <= LFS_INLINE_MAX); LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->read_size); lfs->inline_size = lfs->cfg->inline_size; if (!lfs->inline_size) { lfs->inline_size = lfs_min(LFS_INLINE_MAX, lfs->cfg->read_size); } LFS_ASSERT(lfs->cfg->attrs_size <= LFS_ATTRS_MAX); lfs->attrs_size = lfs->cfg->attrs_size; if (!lfs->attrs_size) { lfs->attrs_size = LFS_ATTRS_MAX; } LFS_ASSERT(lfs->cfg->name_size <= LFS_NAME_MAX); lfs->name_size = lfs->cfg->name_size; if (!lfs->name_size) { lfs->name_size = LFS_NAME_MAX; } // setup default state lfs->root[0] = 0xffffffff; lfs->root[1] = 0xffffffff; lfs->files = NULL; lfs->dirs = NULL; lfs->deorphaned = false; return 0; } static int lfs_deinit(lfs_t *lfs) { // free allocated memory if (!lfs->cfg->read_buffer) { lfs_free(lfs->rcache.buffer); } if (!lfs->cfg->prog_buffer) { lfs_free(lfs->pcache.buffer); } if (!lfs->cfg->lookahead_buffer) { lfs_free(lfs->free.buffer); } return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // create free lookahead memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); lfs->free.off = 0; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count); lfs->free.i = 0; lfs_alloc_ack(lfs); // create superblock dir lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir, false, (const lfs_block_t[2]){0xffffffff, 0xffffffff}); if (err) { return err; } // write root directory lfs_dir_t root; err = lfs_dir_alloc(lfs, &root, false, (const lfs_block_t[2]){0xffffffff, 0xffffffff}); if (err) { return err; } err = lfs_dir_commit(lfs, &root, NULL); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; dir.tail[0] = lfs->root[0]; dir.tail[1] = lfs->root[1]; // write one superblock lfs_superblock_t superblock = { .root[0] = lfs->root[0], .root[1] = lfs->root[1], .magic = {"littlefs"}, .version = LFS_DISK_VERSION, .block_size = lfs->cfg->block_size, .block_count = lfs->cfg->block_count, .inline_size = lfs->inline_size, .attrs_size = lfs->attrs_size, .name_size = lfs->name_size, }; dir.count += 1; err = lfs_dir_commit(lfs, &dir, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SUPERBLOCK | LFS_STRUCT_DIR, 0, sizeof(superblock)), .u.buffer=&superblock}}); if (err) { return err; } // sanity check that fetch works err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } return lfs_deinit(lfs); } int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // setup free lookahead lfs->free.off = 0; lfs->free.size = 0; lfs->free.i = 0; lfs_alloc_ack(lfs); // load superblock lfs_dir_t dir; err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (err) { if (err == LFS_ERR_CORRUPT) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); } return err; } lfs_superblock_t superblock; err = lfs_dir_getbuffer(lfs, &dir, 0x7ffff000, &(lfs_mattr_t){ lfs_mktag(LFS_TYPE_SUPERBLOCK | LFS_STRUCT_DIR, 0, sizeof(superblock)), .u.buffer=&superblock}); if (err && err != LFS_ERR_RANGE) { return err; } if (memcmp(superblock.magic, "littlefs", 8) != 0) { LFS_ERROR("Invalid superblock at %d %d", 0, 1); return LFS_ERR_CORRUPT; } uint16_t major_version = (0xffff & (superblock.version >> 16)); uint16_t minor_version = (0xffff & (superblock.version >> 0)); if ((major_version != LFS_DISK_VERSION_MAJOR || minor_version > LFS_DISK_VERSION_MINOR)) { LFS_ERROR("Invalid version %d.%d", major_version, minor_version); return LFS_ERR_INVAL; } if (superblock.inline_size) { if (superblock.inline_size > lfs->inline_size) { LFS_ERROR("Unsupported inline size (%d > %d)", superblock.inline_size, lfs->inline_size); return LFS_ERR_INVAL; } lfs->inline_size = superblock.inline_size; } if (superblock.attrs_size) { if (superblock.attrs_size > lfs->attrs_size) { LFS_ERROR("Unsupported attrs size (%d > %d)", superblock.attrs_size, lfs->attrs_size); return LFS_ERR_INVAL; } lfs->attrs_size = superblock.attrs_size; } if (superblock.name_size) { if (superblock.name_size > lfs->name_size) { LFS_ERROR("Unsupported name size (%d > %d)", superblock.name_size, lfs->name_size); return LFS_ERR_INVAL; } lfs->name_size = superblock.name_size; } lfs->root[0] = superblock.root[0]; lfs->root[1] = superblock.root[1]; return 0; } int lfs_unmount(lfs_t *lfs) { return lfs_deinit(lfs); } /// Internal filesystem filesystem operations /// int lfs_fs_traverse(lfs_t *lfs, int (*cb)(lfs_t *lfs, void *data, lfs_block_t block), void *data) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_dir_t dir = {.tail = {0, 1}}; while (!lfs_pairisnull(dir.tail)) { for (int i = 0; i < 2; i++) { int err = cb(lfs, data, dir.tail[i]); if (err) { return err; } } // iterate through ids in directory int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } for (uint16_t id = 0; id < dir.count; id++) { lfs_mattr_t attr; int err = lfs_dir_getentry(lfs, &dir, 0x701ff000, lfs_mktag(LFS_TYPE_REG, id, 0), &attr); if (err) { if (err == LFS_ERR_NOENT) { continue; } return err; } if (lfs_tag_struct(attr.tag) == LFS_STRUCT_CTZ) { err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL, attr.u.ctz.head, attr.u.ctz.size, cb, data); if (err) { return err; } } } } // iterate over any open files for (lfs_file_t *f = lfs->files; f; f = f->next) { if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->head, f->size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } /* int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } lfs_dir_t dir; int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // iterate over contents lfs_mattr_t entry; while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) { err = lfs_dir_get(lfs, &dir, dir.off, &entry.d, sizeof(entry.d)); lfs_entry_fromle32(&entry.d); if (err) { return err; } dir.off += lfs_entry_size(&entry); if ((0x70 & entry.d.type) == LFS_STRUCT_CTZ) { err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL, entry.d.u.file.head, entry.d.u.file.size, cb, data); if (err) { return err; } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (lfs_pairisnull(cwd)) { break; } } // iterate over any open files for (lfs_file_t *f = lfs->files; f; f = f->next) { if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->head, f->size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } */ static int lfs_pred(lfs_t *lfs, const lfs_block_t pair[2], lfs_dir_t *pdir) { // iterate over all directory directory entries pdir->tail[0] = 0; pdir->tail[1] = 1; while (!lfs_pairisnull(pdir->tail)) { if (lfs_paircmp(pdir->tail, pair) == 0) { return true; // TODO should we return true only if pred is part of dir? } int err = lfs_dir_fetch(lfs, pdir, pdir->tail); if (err) { return err; } } return false; } /* static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir) { if (lfs_pairisnull(lfs->root)) { return 0; } // iterate directories int err = lfs_dir_fetch(lfs, pdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } while (!lfs_pairisnull(pdir->d.tail)) { if (lfs_paircmp(pdir->d.tail, dir) == 0) { return true; } err = lfs_dir_fetch(lfs, pdir, pdir->d.tail); if (err) { return err; } } return false; } */ static int lfs_parent(lfs_t *lfs, const lfs_block_t pair[2], lfs_dir_t *parent, lfs_mattr_t *attr) { // iterate over all directory directory entries parent->tail[0] = 0; parent->tail[1] = 1; while (!lfs_pairisnull(parent->tail)) { int err = lfs_dir_fetch(lfs, parent, parent->tail); if (err) { return err; } // TODO make this O(n) by using fetchwith to match the pointers for (uint16_t id = 0; id < parent->count; id++) { int err = lfs_dir_getentry(lfs, parent, 0x43dff000, lfs_mktag(LFS_STRUCT_DIR, id, 0), attr); if (err) { if (err == LFS_ERR_NOENT) { continue; } return err; } if (lfs_paircmp(attr->u.pair, pair) == 0) { return true; } } } return false; } /* static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *parent, lfs_mattr_t *attr) { if (lfs_pairisnull(lfs->root)) { return 0; } parent->d.tail[0] = 0; parent->d.tail[1] = 1; // iterate over all directory directory entries while (!lfs_pairisnull(parent->d.tail)) { int err = lfs_dir_fetch(lfs, parent, parent->d.tail); if (err) { return err; } while (true) { err = lfs_dir_next(lfs, parent, attr); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } if (((0x70 & attr->d.type) == LFS_STRUCT_DIR) && lfs_paircmp(attr->d.u.dir, dir) == 0) { return true; } } } return false; } */ static int lfs_moved(lfs_t *lfs, lfs_dir_t *fromdir, uint16_t fromid) { // grab entry pair we're looking for fromdir->moveid = -1; lfs_mattr_t fromentry; // TODO what about inline files? int err = lfs_dir_getentry(lfs, fromdir, 0x401ff000, lfs_mktag(LFS_TYPE_REG, fromid, 0), &fromentry); fromdir->moveid = fromid; if (err) { return err; } // skip superblock lfs_dir_t todir; err = lfs_dir_fetch(lfs, &todir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } // iterate over all directory directory entries while (!lfs_pairisnull(todir.tail)) { int err = lfs_dir_fetch(lfs, &todir, todir.tail); if (err) { return err; } for (int toid = 0; toid < todir.count; toid++) { if (lfs_paircmp(todir.pair, fromdir->pair) == 0 && toid == fromid) { continue; } lfs_mattr_t toentry; int err = lfs_dir_getentry(lfs, &todir, 0x43dff000, lfs_mktag(LFS_STRUCT_DIR, toid, 0), &toentry); if (err) { if (err == LFS_ERR_NOENT) { continue; } return err; } if (lfs_paircmp(toentry.u.pair, fromentry.u.pair) == 0) { return true; } } } return false; } /* static int lfs_moved(lfs_t *lfs, const void *e) { if (lfs_pairisnull(lfs->root)) { return 0; } // skip superblock lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1}); if (err) { return err; } // iterate over all directory directory entries lfs_mattr_t entry; while (!lfs_pairisnull(cwd.d.tail)) { err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail); if (err) { return err; } while (true) { err = lfs_dir_next(lfs, &cwd, &entry); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } if (!(LFS_STRUCT_MOVED & entry.d.type) && memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) { return true; } } } return false; } */ // TODO rename to lfs_dir_relocate? static int lfs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], const lfs_block_t newpair[2]) { // find parent lfs_dir_t parent; lfs_mattr_t attr; int res = lfs_parent(lfs, oldpair, &parent, &attr); if (res < 0) { return res; } if (res) { // update disk, this creates a desync attr.u.pair[0] = newpair[0]; attr.u.pair[1] = newpair[1]; int err = lfs_dir_commit(lfs, &parent, &(lfs_mattrlist_t){attr}); if (err) { return err; } // update internal root if (lfs_paircmp(oldpair, lfs->root) == 0) { LFS_DEBUG("Relocating root %d %d", newpair[0], newpair[1]); lfs->root[0] = newpair[0]; lfs->root[1] = newpair[1]; } // TODO update dir list!!? // clean up bad block, which should now be a desync return lfs_deorphan(lfs); } // find pred res = lfs_pred(lfs, oldpair, &parent); if (res < 0) { return res; } if (res) { // just replace bad pair, no desync can occur parent.tail[0] = newpair[0]; parent.tail[1] = newpair[1]; int err = lfs_dir_commit(lfs, &parent, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SOFTTAIL + parent.split*0x10, // TODO hm 0x1ff, sizeof(lfs_block_t[2])), .u.pair[0]=newpair[0], .u.pair[1]=newpair[1]}}); if (err) { return err; } } // shift over any dirs/files that are affected for (int i = 0; i < 2; i++) { for (lfs_dir_t *d = ((void*[2]){lfs->dirs, lfs->files})[i]; d; d = d->next) { if (lfs_paircmp(d->pair, oldpair) == 0) { d->pair[0] = newpair[0]; d->pair[1] = newpair[1]; } } } // couldn't find dir, must be new return 0; } int lfs_deorphan(lfs_t *lfs) { lfs->deorphaned = true; if (lfs_pairisnull(lfs->root)) { return 0; } lfs_dir_t pdir = {.split = true}; lfs_dir_t dir = {.tail = {0, 1}}; // iterate over all directory directory entries while (!lfs_pairisnull(dir.tail)) { int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } // check head blocks for orphans if (!pdir.split) { // check if we have a parent lfs_dir_t parent; lfs_mattr_t attr; int res = lfs_parent(lfs, pdir.tail, &parent, &attr); if (res < 0) { return res; } if (!res) { // we are an orphan LFS_DEBUG("Found orphan %d %d", pdir.tail[0], pdir.tail[1]); pdir.tail[0] = dir.tail[0]; pdir.tail[1] = dir.tail[1]; err = lfs_dir_commit(lfs, &pdir, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SOFTTAIL, 0x1ff, sizeof(pdir.tail)), .u.buffer=pdir.tail}}); if (err) { return err; } break; } if (!lfs_pairsync(attr.u.pair, pdir.tail)) { // we have desynced LFS_DEBUG("Found desync %d %d", attr.u.pair[0], attr.u.pair[1]); pdir.tail[0] = attr.u.pair[0]; pdir.tail[1] = attr.u.pair[1]; err = lfs_dir_commit(lfs, &pdir, &(lfs_mattrlist_t){ {lfs_mktag(LFS_TYPE_SOFTTAIL, 0x1ff, sizeof(pdir.tail)), .u.buffer=pdir.tail}}); if (err) { return err; } break; } } // check entries for moves if (dir.moveid >= 0) { // TODO moves and stuff // TODO need to load entry to find it // // found moved entry // int moved = lfs_moved(lfs, &entry.u); // if (moved < 0) { // return moved; // } // // if (moved) { // LFS_DEBUG("Found move %d %d", // entry.d.u.dir[0], entry.d.u.dir[1]); // err = lfs_dir_set(lfs, &dir, &entry, (struct lfs_region[]){ // {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1); // if (err) { // return err; // } // } else { // LFS_DEBUG("Found partial move %d %d", // entry.d.u.dir[0], entry.d.u.dir[1]); // entry.d.type &= ~LFS_STRUCT_MOVED; // err = lfs_dir_set(lfs, &dir, &entry, (struct lfs_region[]){ // {LFS_FROM_MEM, 0, 1, &entry.d, 1}}, 1); // if (err) { // return err; // } // } } memcpy(&pdir, &dir, sizeof(pdir)); } return 0; } /* int lfs_deorphan(lfs_t *lfs) { lfs->deorphaned = true; if (lfs_pairisnull(lfs->root)) { return 0; } lfs_dir_t pdir = {.d.size = 0x80000000}; lfs_dir_t cwd = {.d.tail[0] = 0, .d.tail[1] = 1}; // iterate over all directory directory entries while (!lfs_pairisnull(cwd.d.tail)) { int err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail); if (err) { return err; } // check head blocks for orphans if (!(0x80000000 & pdir.d.size)) { // check if we have a parent lfs_dir_t parent; lfs_mattr_t entry; int res = lfs_parent(lfs, pdir.d.tail, &parent, &entry); if (res < 0) { return res; } if (!res) { // we are an orphan LFS_DEBUG("Found orphan %d %d", pdir.d.tail[0], pdir.d.tail[1]); pdir.d.tail[0] = cwd.d.tail[0]; pdir.d.tail[1] = cwd.d.tail[1]; err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } break; } if (!lfs_pairsync(entry.d.u.dir, pdir.d.tail)) { // we have desynced LFS_DEBUG("Found desync %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); pdir.d.tail[0] = entry.d.u.dir[0]; pdir.d.tail[1] = entry.d.u.dir[1]; err = lfs_dir_commit(lfs, &pdir, NULL, 0); if (err) { return err; } break; } } // check entries for moves lfs_mattr_t entry; while (true) { err = lfs_dir_next(lfs, &cwd, &entry); if (err && err != LFS_ERR_NOENT) { return err; } if (err == LFS_ERR_NOENT) { break; } // found moved entry if (entry.d.type & LFS_STRUCT_MOVED) { int moved = lfs_moved(lfs, &entry.d.u); if (moved < 0) { return moved; } if (moved) { LFS_DEBUG("Found move %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1); if (err) { return err; } } else { LFS_DEBUG("Found partial move %d %d", entry.d.u.dir[0], entry.d.u.dir[1]); entry.d.type &= ~LFS_STRUCT_MOVED; err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){ {LFS_FROM_MEM, 0, 1, &entry.d, 1}}, 1); if (err) { return err; } } } } memcpy(&pdir, &cwd, sizeof(pdir)); } return 0; } */ /// External filesystem filesystem operations /// //int lfs_fs_getattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { // lfs_dir_t dir; // int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = sizeof(dir.d)}; // err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // if (err != LFS_ERR_NOENT) { // if (!err) { // break; // } // return err; // } // // lfs_dir_t cwd; // int err = lfs_dir_fetch(lfs, &cwd, lfs->root); // if (err) { // return err; // } // // lfs_mattr_t entry; // err = lfs_dir_find(lfs, &cwd, &entry, &path); // if (err) { // return err; // } // // return lfs_dir_getinfo(lfs, &cwd, &entry, info); // return lfs_dir_getattrs(lfs, &dir, &entry, attrs, count); //} // //int lfs_fs_setattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) { // lfs_dir_t dir; // int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); // if (err) { // return err; // } // // lfs_mattr_t entry = {.off = sizeof(dir.d)}; // err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4); // if (err) { // return err; // } // entry.size = lfs_entry_size(&entry); // // return lfs_dir_setattrs(lfs, &dir, &entry, attrs, count); //} static int lfs_fs_size_count(void *p, lfs_block_t block) { lfs_size_t *size = p; *size += 1; return 0; } lfs_ssize_t lfs_fs_size(lfs_t *lfs) { lfs_size_t size = 0; int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size); if (err) { return err; } return size; }