// Ovladani signalizacni chytre LED diody #include "WSLed.hpp" #if defined(ARDUINO_ARCH_ESP32) // # include "esp_task.h" // https://github.com/JSchaenzle/ESP32-NeoPixel-WS2812-RMT/blob/master/ws2812_control.c #include #ifndef LED_RMT_TX_CHANNEL #define LED_RMT_TX_CHANNEL RMT_CHANNEL_0 #endif // These values are determined by measuring pulse timing with logic analyzer and adjusting to match datasheet. #define T0H 16 // 0 bit high time #define T1H 32 // 1 bit high time #define T0L 34 // 0 bit low time #define T1L 18 // 1 bit low time #endif #if defined(ARDUINO_ARCH_ESP8266) // due to linker overriding the ICACHE_RAM_ATTR for cpp files, these methods are // moved into a C file so the attribute will be applied correctly extern "C" IRAM_ATTR void espShow(uint8_t pin, uint8_t * pixels, uint32_t numBytes, boolean is800KHz); #endif // TODO: Proverit ESP32 s https://github.com/adafruit/Adafruit_NeoPixel/blob/master/esp.c // ... a s https://github.com/Freenove/Freenove_WS2812_Lib_for_ESP32 #define countof(a) (sizeof(a) / sizeof(a[0])) static const uint16_t LB[] PROGMEM = { 0x201, 0x202, 0x103, 0x104, 0x105, 0x106, 0x107, 0x109, 0x10a, 0x10c, 0x10e, 0x110, 0x112, 0x114, 0x116, 0x119, 0x11c, 0x11e, 0x122, 0x125, 0x128, 0x12c, 0x130, 0x134, 0x139, 0x13d, 0x142, 0x147, 0x14d, 0x152, 0x158, 0x15e, 0x165, 0x16b, 0x172, 0x179, 0x180, 0x187, 0x18e, 0x196, 0x19d, 0x1a5, 0x1ac, 0x1b3, 0x1bb, 0x1c2, 0x1c9, 0x1cf, 0x1d6, 0x1dc, 0x1e2, 0x1e7, 0x1ec, 0x1f0, 0x1f4, 0x1f7, 0x1fa, 0x1fc, 0x1fd, 0x3fe, 0x1fd, 0x1fb, 0x1f8, 0x1f5, 0x1f2, 0x1ed, 0x1e9, 0x1e4, 0x1de, 0x1d8, 0x1d2, 0x1cb, 0x1c4, 0x1bd, 0x1b6, 0x1af, 0x1a7, 0x1a0, 0x198, 0x191, 0x18a, 0x182, 0x17b, 0x174, 0x16d, 0x167, 0x161, 0x15a, 0x154, 0x14f, 0x149, 0x144, 0x13f, 0x13a, 0x136, 0x131, 0x12d, 0x12a, 0x126, 0x123, 0x11f, 0x11c, 0x11a, 0x117, 0x115, 0x112, 0x110, 0x10e, 0x10c, 0x10b, 0x109, 0x108, 0x107, 0x105, 0x104, 0x203, 0x102, 0x201, 0x2900}; static void ledTrampoline(wsLED * ptr) { ptr->rtLed(); } inline bool wsLED::canShow() const { return (micros() - mEndTime) >= 70L; } void wsLED::show() { uint8_t color[3]; for (uint8_t i = 0; i < 3; i++) { // https://github.com/FastLED/FastLED/wiki/FastLED-Color-Correction uint16_t c = (uint16_t) mColor[i] * (1 + (uint16_t) mScale); color[i] = (uint8_t) (c >> 8); } while (!canShow()) __asm__ volatile("nop"); #if defined(ARDUINO_ARCH_ESP32) uint32_t bits_to_send = ((uint32_t) color[0] << 16) | ((uint32_t) color[1] << 8) | (uint32_t) color[2]; uint32_t mask = 1 << (BITS_PER_LED_CMD - 1); for (uint32_t bit = 0; bit < BITS_PER_LED_CMD; bit++) { uint32_t bit_is_set = bits_to_send & mask; led_data_buffer[bit] = bit_is_set ? (rmt_item32_t){{{T1H, 1, T1L, 0}}} : (rmt_item32_t){{{T0H, 1, T0L, 0}}}; mask >>= 1; } ESP_ERROR_CHECK(rmt_write_items(LED_RMT_TX_CHANNEL, led_data_buffer, LED_BUFFER_ITEMS, false)); mEndTime = micros() + 100; // TODO: unfortunately this time is not valid for ESP32 using RMT peripheral #else noInterrupts(); #if defined(WSLED_PL9823) espShow(mPin, color, 1 * 3, false); #else espShow(mPin, color, 1 * 3, true); #endif interrupts(); mEndTime = micros(); #endif } wsLED::wsLED(int pin, int order) : mPin(pin), mOrder(order) { } wsLED::wsLED() : mPin(NOT_A_PIN), mOrder(RGB) { } void wsLED::begin(int pin) { mPin = pin; begin(); } void wsLED::begin() { if (NOT_A_PIN != mPin) { #if defined(ARDUINO_ARCH_ESP8266) pinMode(mPin, OUTPUT); #endif #if defined(ARDUINO_ARCH_ESP32) // TODO: mozna nejak zkusit najit volny RMT kanal? rmt_config_t config; config.rmt_mode = RMT_MODE_TX; config.channel = LED_RMT_TX_CHANNEL; config.gpio_num = (gpio_num_t) mPin; config.mem_block_num = 3; config.tx_config.loop_en = false; config.tx_config.carrier_en = false; config.tx_config.idle_output_en = true; config.tx_config.idle_level = RMT_IDLE_LEVEL_LOW; config.clk_div = 2; ESP_ERROR_CHECK(rmt_config(&config)); ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, 0)); #endif show(); } } void wsLED::setColor(const LEDRGB & color) { mColor[(mOrder >> 6) & 7] = color.r; mColor[(mOrder >> 3) & 7] = color.g; mColor[mOrder & 7] = color.b; } void wsLED::rtLed() { uint32_t timing; mTimer.detach(); switch (mLedState) { case LED_BLINK: if (mSubState) { setColor(mColor2); } else { setColor(mColor1); } mSubState = !mSubState; timing = mBlinkSpeed; break; case LED_BREATH: { ++mSubState; mSubState %= countof(LB); uint16_t val = pgm_read_word(&LB[mSubState]); mScale = (uint8_t) val; val >>= 8; timing = 30ul * val; if (timing < 30) { timing = 30; } break; } case LED_PULSE: { mLedState = mSavedState; mSubState = 0; setColor(mColor1); timing = 5; break; } case LED_PULSE_START: setColor(mPulseColor); mLedState = LED_PULSE; timing = mPulseDuration; break; default: timing = 5000; break; } show(); mTimer.attach_ms(timing, ledTrampoline, this); } void wsLED::setColors(const LEDRGB & color1, const LEDRGB & color2) { mColor1 = color1; mColor2 = color2; if (LED_BREATH == mLedState) { setColor(mColor1); } } void wsLED::blink(uint32_t speed) { if (NOT_A_PIN != mPin) { if (LED_BLINK != mLedState) { mTimer.detach(); mLedState = LED_BLINK; mScale = 0xff; mSubState = 1; mBlinkSpeed = speed; mTimer.attach_ms(5, ledTrampoline, this); } } } void wsLED::breath() { if (NOT_A_PIN != mPin) { if (LED_BREATH != mLedState) { mTimer.detach(); mLedState = LED_BREATH; mSubState = 0; setColor(mColor1); mTimer.attach_ms(5, ledTrampoline, this); } } } void wsLED::setOrder(int neworder) { mOrder = neworder; } void wsLED::pulse(const LEDRGB & color, uint32_t duration) { if (NOT_A_PIN != mPin) { mTimer.detach(); mScale = 0xff; mPulseColor = color; if (LED_BREATH == mLedState || LED_BLINK == mLedState) { mSavedState = mLedState; } else { mSavedState = LED_STOP; } mPulseDuration = duration; mLedState = LED_PULSE_START; mTimer.attach_ms(5, ledTrampoline, this); } } ledstate_t wsLED::getState() { return mLedState; } void wsLED::stop(const LEDRGB & color) { if (NOT_A_PIN != mPin) { mTimer.detach(); mLedState = LED_STOP; mScale = 0xff; setColor(color); show(); } }