When using "%d" or "%x" with uint32_t types, arm-none-eabi-gcc reports
warnings like below:
-- >8 -- >8 -- >8 -- >8 -- >8 -- >8 --
In file included from lfs.c:8:
lfs_util.h:45:12: warning: format '%d' expects argument of type 'int', but argument 4 has type 'lfs_block_t' {aka 'long unsigned int'} [-Wformat=]
printf("lfs debug:%d: " fmt "\n", __LINE__, __VA_ARGS__)
^~~~~~~~~~~~~~~~
lfs.c:2512:21: note: in expansion of macro 'LFS_DEBUG'
LFS_DEBUG("Found partial move %d %d",
^~~~~~~~~
lfs.c:2512:55: note: format string is defined here
LFS_DEBUG("Found partial move %d %d",
~^
%ld
-- >8 -- >8 -- >8 -- >8 -- >8 -- >8 --
Fix this by replacing "%d" and "%x" with `"%" PRIu32` and `"%" PRIx32`.
As a shortcut, littlefs never bother to zero any of the buffers is used.
It didn't need to because it would always write out the entirety of the
data it needed.
Unfortunately, this, combined with the extra padding used to align
buffers to the nearest prog size, would lead to uninitialized data
getting written out to disk.
This means unrelated file data could be written to different parts of
storage, or worse, information leaked from the malloc calls could be
written out to disk unnecessarily.
found by rojer
- Fixed shadowed variable warnings in lfs_dir_find.
- Fixed unused parameter warnings when LFS_NO_MALLOC is enabled.
- Added extra warning flags to CFLAGS.
- Updated tests so they don't shadow the "size" variable for -Wshadow
Opening multiple files simultaneously is not supported without dynamic memory,
but the previous behaviour would just let the files overwrite each other, which
could lead to bad errors down the line
found by husigeza
Paths such as the following were causing issues:
/tea/hottea/.
/tea/hottea/..
Unfortunately the existing structure for path lookup didn't make it very
easy to introduce proper handling in this case without duplicating the
entire skip logic for paths. So the lfs_dir_find function had to be
restructured a bit.
One odd side-effect of this is that now lfs_dir_find includes the
initial fetch operation. This kinda breaks the fetch -> op pattern of
the dir functions, but does come with a nice code size reduction.
As pointed out by davidefer, the lookahead pointer modular arithmetic
does not work around integer overflow when the pointer size is not a
multiple of the block count.
To avoid overflow problems, the easy solution is to stop trying to
work around integer overflows and keep the lookahead offset inside the
block device. To make this work, the ack was modified into a resetable
counter that is decremented every block allocation.
As a plus, quite a bit of the allocation logic ended up simplified.
This has existed for some time in the form of the lfs_traverse
function, however lfs_traverse is relatively unconventional and
has proven to not have been the most intuitive for users.