18 Commits

Author SHA1 Message Date
Christopher Haster
7af8b81b81 Changed lookahead configuration unit to bytes instead of bits
The fact that the lookahead buffer uses bits instead of bytes is an
internal detail. Poking this through to the user API has caused a decent
amount of confusion. Most buffers are provided as bytes and the
inconsistency here can be surprising.

The use of bytes instead of bits also makes us forward compatible in
the case that we want to change the lookahead internal representation
(hint segment list).

Additionally, we change the configuration name to lookahead_size. This
matches other configurations, such as cache_size and read_size, while
also notifying the user that something important changed at compile time
(by breaking).
2018-10-18 10:00:49 -05:00
Christopher Haster
e4a0d586d5 Added building blocks for dynamic wear-leveling
Initially, littlefs relied entirely on bad-block detection for
wear-leveling. Conceptually, at the end of a devices lifespan, all
blocks would be worn evenly, even if they weren't worn out at the same
time. However, this doesn't work for all devices, rather than causing
corruption during writes, wear reduces a devices "sticking power",
causing bits to flip over time. This means for many devices, true
wear-leveling (dynamic or static) is required.

Fortunately, way back at the beginning, littlefs was designed to do full
dynamic wear-leveling, only dropping it when making the retrospectively
short-sighted realization that bad-block detection is theoretically
sufficient. We can enable dynamic wear-leveling with only a few tweaks
to littlefs. These can be implemented without breaking backwards
compatibility.

1. Evict metadata-pairs after a certain number of writes. Eviction in
   this case is identical to a relocation to recover from a bad block.
   We move our data and stick the old block back into our pool of
   blocks.

   For knowing when to evict, we already have a revision count for each
   metadata-pair which gives us enough information. We add the
   configuration option block_cycles and evict when our revision count
   is a multiple of this value.

2. Now all blocks participate in COW behaviour. However we don't store
   the state of our allocator, so every boot cycle we reuse the first
   blocks on storage. This is very bad on a microcontroller, where we
   may reboot often. We need a way to spread our usage across the disk.

   To pull this off, we can simply randomize which block we start our
   allocator at. But we need a random number generator that is different
   on each boot. Fortunately we have a great source of entropy, our
   filesystem. So we seed our block allocator with a simple hash of the
   CRCs on our metadata-pairs. This can be done for free since we
   already need to scan the metadata-pairs during mount.

What we end up with is a uniform distribution of wear on storage. The
wear is not perfect, if a block is used for metadata it gets more wear,
and the randomization may not be exact. But we can never actually get
perfect wear-leveling, since we're already resigned to dynamic
wear-leveling at the file level.

With the addition of metadata logging, we end up with a really
interesting two-stage wear-leveling algorithm. At the low-level,
metadata is statically wear-leveled. At the high-level, blocks are
dynamically wear-leveled.

---

This specific commit implements the first step, eviction of metadata
pairs. Entertwining this into the already complicated compact logic was
a bit annoying, however we can combine the logic for superblock
expansion with the logic for metadata-pair eviction.
2018-10-18 09:30:45 -05:00
Christopher Haster
dbcbe4e088 Changed name of upper-limits from blah_size to blah_max
This standardizes the naming between the LFS_BLAH_MAX macros and the
blah_max configuration in the lfs_config structure.
2018-10-16 09:42:46 -05:00
Christopher Haster
3cfa08602a Introduced cache_size as alternative to hardware read/write sizes
The introduction of an explicit cache_size configuration allows
customization of the cache buffers independently from the hardware
read/write sizes.

This has been one of littlefs's main handicaps. Without a distinction
between cache units and hardware limitations, littlefs isn't able to
read or program _less_ than the cache size. This leads to the
counter-intuitive case where larger cache sizes can actually be harmful,
since larger read/prog sizes require sending more data over the bus if
we're only accessing a small set of data (for example the CTZ skip-list
traversal).

This is compounded with metadata logging, since a large program size
limits the number of commits we can write out in a single metadata
block. It really doesn't make sense to link program size + cache
size here.

With a separate cache_size configuration, we can be much smarter about
what we actually read/write from disk.

This also simplifies cache handling a bit. Before there were two
possible cache sizes, but these were rarely used. Note that the
cache_size is NOT written to the superblock and can be freely changed
without breaking backwards compatibility.
2018-10-16 08:32:01 -05:00
Christopher Haster
0405ceb171 Cleaned up enough things to pass basic file testing 2018-10-13 13:41:05 -05:00
Christopher Haster
dc513b172f Silenced more of aldot's warnings
Flags used:
-Wall -Wextra -Wshadow -Wwrite-strings -Wundef -Wstrict-prototypes
-Wunused -Wunused-parameter -Wunused-function -Wunused-value
-Wmissing-prototypes -Wmissing-declarations -Wold-style-definition
2018-02-04 13:15:30 -06:00
Bernhard Reutner-Fischer
6d55755128 tests: Silence warnings in template
- no previous prototype for ‘test_assert’
- no previous prototype for ‘test_count’
- unused parameter ‘b’ in test_count
- function declaration isn’t a prototype for main
2018-02-04 13:15:17 -06:00
Christopher Haster
88f678f4c6 Fixed self-assign warning in tests
Some of the tests were creating a variable `res`, however the test
system itself relies on it's own `res` variable. This worked out by
luck, but could lead to problems if the res variables were different
types.

Changed the generated variable in the test system to the less common
name `test`, which also works out to share the same prefix as other test
functions.
2018-01-29 18:37:48 -06:00
Christopher Haster
ac9766ee39 Added self-hosting fuzz test using littlefs-fuse 2017-10-10 05:05:57 -05:00
Christopher Haster
1eeb2a6811 Shrinked on-disk directory program size
Directories still consume two full erase blocks, but now only program
the exact on-disk region to store the directory contents. This results
in a decent improvement in the amount of data written and read to the
device when doing directory operations.

Calculating the checksum of dynamically sized data is surprisingly
tricky, since the size of the data could also contain errors. For the
littlefs, we can assume the data size must fit in an erase block.
If the data size is invalid, we can just treat the block as corrupted.
2017-06-28 15:50:40 -05:00
Christopher Haster
fd1da602d7 Added support for handling corrupted blocks
This provides a limited form of wear leveling. While wear is
not actually balanced across blocks, the filesystem can recover
from corrupted blocks and extend the lifetime of a device nearly
as much as dynamic wear leveling.

For use-cases where wear is important, it would be better to use
a full form of dynamic wear-leveling at the block level. (or
consider a logging filesystem).

Corrupted block handling was simply added on top of the existing
logic in place for the filesystem, so it's a bit more noodly than
it may have to be, but it gets the work done.
2017-05-15 00:40:56 -05:00
Christopher Haster
aa872657d2 Cleaned up block allocator
Removed scanning for stride
- Adds complexity with questionable benefit
- Can be added as an optimization later

Fixed handling around device boundaries and where lookahead may not be a
factor of the device size (consider small devices with only a few
blocks)

Added support for configuration with optional dynamic memory as found in
the caching configuration
2017-04-22 16:00:45 -05:00
Christopher Haster
7050922623 Added optional block-level caching
This adds caching of the most recent read/program blocks, allowing
support of devices that don't have byte-level read+writes, along
with reduced device access on devices that do support byte-level
read+writes.

Note: The current implementation is a bit eager to drop caches where
it simplifies the cache layer. This layer is already complex enough.

Note: It may be worthwhile to add a compile switch for caching to
reduce code size, note sure.

Note: This does add a dependency on malloc, which could have a porting
layer, but I'm just using the functions from stdlib for now. These can be
overwritten with noops if the user controls the system, and keeps things
simple for now.
2017-04-22 16:00:40 -05:00
Christopher Haster
789286a257 Simplified config
Before, the lfs had multiple paths to determine config options:
- lfs_config struct passed during initialization
- lfs_bd_info struct passed during block device initialization
- compile time options

This allowed different developers to provide their own needs
to the filesystem, such as the block device capabilities and
the higher level user's own tweaks.

However, this comes with additional complexity and action required
when the configurations are incompatible.

For now, this has been reduced to all information (including block
device function pointers) being passed through the lfs_config struct.
We just defer more complicated handling of configuration options to
the top level user.

This simplifies configuration handling and gives the top level user
the responsibility to handle configuration, which they probably would
have wanted to do anyways.
2017-04-22 15:42:05 -05:00
Christopher Haster
c25c893219 Moved to brute-force deorphan without parent pointers
Removing the dependency to the parent pointer solves
many issues with non-atomic updates of children's
parent pointers with respect to any move operations.

However, this comes with an embarrassingly terrible
runtime as the only other option is to exhaustively
check every dir entry to find a child's parent.

Fortunately, deorphaning should be a relatively rare
operation.
2017-04-18 01:44:01 -05:00
Christopher Haster
8a95fdfdfd Added file read/write tests and some framework updates 2017-03-25 19:23:30 -05:00
Christopher Haster
a711675607 Added dir tests, test fixes, config 2017-03-25 19:23:30 -05:00
Christopher Haster
afa4ad8254 Added a rudimentary test framework
Tests can be found in 'tests/test_blah.sh'
Tests can be run with 'make test'
2017-03-25 19:23:30 -05:00