Commit Graph

396 Commits

Author SHA1 Message Date
Christopher Haster
746b90965c Added lfs_fs_size for finding a count of used blocks
This has existed for some time in the form of the lfs_traverse
function, through which a user could provide a simple callback that
would just count the number of blocks lfs_traverse finds. However,
this approach is relatively unconventional and has proven to be confusing
for most users.
2018-10-09 23:02:57 -05:00
Christopher Haster
93244a3734 Added file-level and fs-level custom attribute APIs
In the form of lfs_file_setattr, lfs_file_getattr, lfs_fs_setattr,
lfs_fs_getattr.

This enables atomic updates of custom attributes as described in
6c754c8, and provides a custom attribute API that allows custom attributes
to be stored on the filesystem itself.
2018-10-09 23:02:50 -05:00
Christopher Haster
636c0ed3d1 Modified commit regions to work better with custom attributes
Mostly just removed LFS_FROM_DROP and changed the DSL grammar a bit to
allow drops to occur naturally through oldsize -> newsize diff expressed
in the region struct. This prevents us from having to add a drop every
time we want to update an entry in-place.
2018-10-09 23:02:09 -05:00
Christopher Haster
6c754c8023 Added support for atomically committing custom attributes
Although it's simple and probably what most users expect, the previous
custom attributes API suffered from one problem: the inability to update
attributes atomically.

If we consider our timestamp use case, updating a file would require:
1. Update the file
2. Update the timestamp

If a power loss occurs during this sequence of updates, we could end up
with a file with an incorrect timestamp.

Is this a big deal? Probably not, but it could be a surprise only found
after a power-loss. And littlefs was developed with the _specifically_
to avoid suprises during power-loss.

The littlefs is perfectly capable of bundling multiple attribute updates
in a single directory commit. That's kind of what it was designed to do.
So all we need is a new committer opcode for list of attributes, and
then poking that list of attributes through the API.

We could provide the single-attribute functions, but don't, because the
fewer functions makes for a smaller codebase, and these are already the
more advanced functions so we can expect more from users. This also
changes semantics about what happens when we don't find an attribute,
since erroring would throw away all of the other attributes we're
processing.

To atomically commit both custom attributes and file updates, we need a
new API, lfs_file_setattr. Unfortunately the semantics are a bit more
confusing than lfs_setattr, since the attributes aren't written out
immediately.
2018-10-09 23:02:09 -05:00
Christopher Haster
6ffc8d3480 Added simple custom attributes
A much requested feature (mostly because of littlefs's notable lack of
timestamps), this commits adds support for user-specified custom
attributes.

Planned (though underestimated) since v1, custom attributes provide a
route for OSs and applications to provide their own metadata in
littlefs, without limiting portability.

However, unlike custom attributes that can be found on much more
powerful PC filesystems, these custom attributes are very limited,
intended for only a handful of bytes for very important metadata. Each
attribute has only a single byte to identify the attribute, and the
size of all attributes attached to a file is limited to 64 bytes.

Custom attributes can be accessed through the lfs_getattr, lfs_setattr,
and lfs_removeattr functions.
2018-10-09 23:02:09 -05:00
Christopher Haster
65ea6b3d0f Bumped versions, cleaned up some TODOs and missing comments 2018-10-09 23:02:09 -05:00
Christopher Haster
6774276124 Expanded inline files up to a limit of 1023 bytes
One of the big benefits of inline files is that small files no longer need to
take up a full block. This opens up an opportunity to provide much better
support for storage devices with only a handful of very large blocks. Such as
the internal flash found on most microcontrollers.

After investigating some use cases for a filesystem on internal flash,
it has become apparent that the 255-byte limit is going to be too
restrictive to be useful in many cases. Most uses I found needed files
~4-64 bytes in size, but it wasn't uncommon to find files ~512 bytes in
length.

To try to remedy this, I've pushed the 255 byte limit up to 1023 bytes,
by stealing some bits from the previously-unused attributes's size.
Unfortunately this limits attributes to 63 bytes in total and has a
minor code cost, but I'm not sure even 1023 bytes will be sufficient for
a lot of cases.

The littlefs will probably never be as efficient with internal flash as
other filesystems such as SPIFFS, it just wasn't designed for this sort of
limited geometry. However, this feature has been heavily requested, even
with limitations, because of the opportunity for code reuse on
microcontrollers with both internal and external flash.
2018-10-09 23:02:09 -05:00
Christopher Haster
6362afa8d0 Added disk-backed limits on the name/attrs/inline sizes
Being a portable, microcontroller-scale embedded filesystem, littlefs is
presented with a relatively unique challenge. The amount of RAM
available is on completely different scales from machine to machine, and
what is normally a reasonable RAM assumption may break completely on an
embedded system.

A great example of this is file names. On almost every PC these days, the limit
for a file name is 255 bytes. It's a very convenient limit for a number
of reasons. However, on microcontrollers, allocating 255 bytes of RAM to
do a file search can be unreasonable.

The simplest solution (and one that has existing in littlefs for a
while), is to let this limit be redefined to a smaller value on devices
that need to save RAM. However, this presents an interesting portability
issue. If these devices are plugged into a PC with relatively infinite
RAM, nothing stops the PC from writing files with full 255-byte file
names, which can't be read on the small device.

One solution here is to store this limit on the superblock during format
time. When mounting a disk, the filesystem implementation is responsible for
checking this limit in the superblock. If it's larger than what can be
read, raise an error. If it's smaller, respect the limit on the
superblock and raise an error if the user attempts to exceed it.

In this commit, this strategy is adopted for file names, inline files,
and the size of all attributes, since these could impact the memory
consumption of the filesystem. (Recording the attribute's limit is
iffy, but is the only other arbitrary limit and could be used for disabling
support of custom attributes).

Note! This changes makes it very important to configure littlefs
correctly at format time. If littlefs is formatted on a PC without
changing the limits appropriately, it will be rejected by a smaller
device.
2018-10-09 23:02:09 -05:00
Christopher Haster
955545839b Added internal lfs_dir_set, an umbrella to dir append/update/remove operations
This move was surprisingly complex, but offers the ultimate opportunity for
code reuse in terms of resizable entries. Instead of needing to provide
separate functions for adding and removing entries, adding and removing
entries can just be viewed as changing an entry's size to-and-from zero.

Unfortunately, it's not _quite_ that simple, since append and remove
hide some relatively complex operations for when directory blocks
overflow or need to be cleaned up.

However, with enough shoehorning, and a new committer type that allows
specifying recursive commit lists (is this now a push-down automata?),
it does seem to be possible to shove all of the entry update logic into
a single function.

Sidenote, I switched back to an enum-based DSL, since the addition of a
recursive region opcode breaks the consistency of what needs to be
passed to the DSL callback functions. It's much simpler to handle each
opcode explicitly inside a recursive lfs_commit_region function.
2018-10-09 23:02:09 -05:00
Christopher Haster
ad74825bcf Added internal lfs_dir_get to consolidate logic for reading dir entries
It's a relatively simple function but offers some code reuse as well as
making the dir entry operations a bit more readable.
2018-10-09 23:02:09 -05:00
Christopher Haster
d0e0453651 Changed how we write out superblock to use append
Making the superblock look like "just another entry" allows us to treat
the superblock like "just another entry" and reuse a decent amount of
logic that would otherwise only be used a format and mount time. In this
case we can use append to write out the superblock like it was creating
a new entry on the filesystem.
2018-10-09 23:02:09 -05:00
Christopher Haster
701e4fa438 Fixed a handful of bugs as result of testing 2018-10-09 23:02:09 -05:00
Christopher Haster
d8cadecba6 Better implementation of inline files, now with overflowing
Now when a file overflows the max inline file size, it will be correctly
written out to a proper block. Additionally, tweaked corner cases around
inline file, however this still needs significant testing.

A real neat part that surprised me is that littlefs _already_ contains
the logic for writing out inline files: in lfs_file_relocate! With a bit
of tweaking, littlefs can pull off both the overflow from inline to
normal files _and_ the relocating of bad blocks in files with the same
piece of logic.
2018-10-09 23:02:09 -05:00
Christopher Haster
836e23895a Shoehorned in hacky implementation of inline files
Proof-of-concept implementation of inline files that stores the file's
content directly in its parent's directory pair.

Inline files are indicated by a different type stored in an entry's
struct field, and take advantage of resizable entries. Where a normal
file's entry would normally hold the reference to the CTZ skip-list, an
inline file's entry contains the contents of the actual file.

Unfortunately, storing the inline file on disk is the easy part. We also
need to manage inline files in the internals of littlefs and provide the
same operations that we do on normal files, all while reusing as much
code as possible to avoid a significant increase in code cost.

There is a relatively simple, though maybe a bit hacky, solution here. If a
file fits entirely in a cache line, the file logic never actually has to go to
disk. This means we can just give the file a "pretend" block (hopefully
one that would assert if ever written to), and carry out file operations
as normal, as long as we catch the file before it exceeds the cache line
and write out the file to an actual disk.
2018-10-09 23:02:09 -05:00
Christopher Haster
fb23044872 Fixed big-endian support for entry structures 2018-10-09 23:02:09 -05:00
Christopher Haster
9273ac708b Added size field to entry structure
The size field is redundant, since an entry's size can be determined
from the nlen+elen+alen+4. However, as you may have guessed from that
expression, calculating the size this way is a bit roundabout and
inefficient. Despite its redundancy, it's cheaper to store the size in the
entry, though with a minor RAM cost.

Note, extra care must now be taken to make sure these size and len fields
don't fall out of sync.
2018-10-09 23:02:09 -05:00
Christopher Haster
03b262b1e8 Separated out version of dir remove/append for non-entries
This allows updates to directories without needing to allocate an entry
struct for every call.
2018-10-09 23:02:09 -05:00
Christopher Haster
362b0bbe45 Minor improvement to from-memory commits
Tweaked the commit callback to pass the arguments for from-memory
commits explicitly, with non-from-memory commits still being able to
hijack the opaque data pointer for additional state.

The from-memory commits make up the vast majority of commits in
littlefs, so this small change has a noticable impact.
2018-10-09 23:02:09 -05:00
Christopher Haster
e4a0cd942d Take advantage of empty space early in dir search
Before, when appending new entries to a directory, we try to find empty space
in the last block of a directory chain. This has a nice side-effect that
the order of directory entries is maintained. However, this isn't strictly
necessary.

We're already scanning the directory chain in order, so other than changes to
directory order, there's no downside to taking advantage of any free
space we come across.
2018-10-09 23:02:09 -05:00
Christopher Haster
f30ab677a4 Traded enum-based DSL for full callback-based DSL
Now, instead of passing an enum for mem/disk commits, we pass a function
pointer that can specify any behaviour.

This has the benefit of opening up the possibility to pass any sort of
commit logic to the committers, and unused logic can be garbage-collected
by the compiler if unused. The downside is that unfortunately compilers have
a harder time optimizing around functions pointers than enums, and
fitting the state into structs for the callbacks may be costly.
2018-10-09 23:02:09 -05:00
Christopher Haster
ca3d6a52d2 Made implicity tag updates explicit
Before, tags were implicitly updated by the dir update functions, which
have a strong understanding of the entry struct. However, most of the
time the tag was already a part of the entry struct being committed.

By making tag updates explicit, this does add cost to commits that
now have to pass tag updates explicitly, but it reduces cost where that
tag and entry update can be combined into one commit region.

It also simplifies the dir update functions.
2018-10-09 23:02:09 -05:00
Christopher Haster
692f0c542e Naive implementation of resizable entries
Now, with the off, diff, and len parameters in each commit entry, we can build
up directory commits that resize entries. This adds complexity but opens
up the directory blocks to be much more flexible.

The main concern is that resizing entries can push around neighboring entries
in surprising ways, such as pushing them into new directory blocks when a
directory splits. This can break littlefs's internal logic in how it tracks
in-flight entries. The most problematic example being open files.

Fortunately, this is helped by a global linked-list of all files and
directories opened by the filesystem. As entries change size, the state
of open files/dirs may be updated as needed. Note this already needed to
exist for the ability to remove files/dirs, which has the same issue.
2018-10-09 23:02:09 -05:00
Christopher Haster
e3daee2621 Changed dir append to mirror commit DSL
Expiremental implementation. This opens up the opportunity to use the same
commit description for both commits and appends, which effectively do the same
thing.

This should lead to better code reuse.
2018-10-09 23:02:09 -05:00
Christopher Haster
73d29f05b2 Adopted a tiny LISP-like DSL for some extra flexibility
Really all this means is that the internal commit function was changed
from taking an array of "commit structures" to a linked-list of "commit
structures". The benefit of a linked-list is that layers of commit
functions can pull off some minor modifications to the description of
the commit. Most notably, commit functions can add additional entries
that will be atomically written out and CRCed along with the initial
commit.

Also a minor benefit, this is one less parameter when committing a
directory with zero entries.
2018-10-09 23:02:09 -05:00
Christopher Haster
4c35c8655a Added different sources for commits, now with disk->disk moves
Previously, commits could only come from memory in RAM. This meant any
entries had to be buffered in their entirety before they could be moved
to a different directory pair. By adding parameters for specifying
commits from existing entries stored on disk, we allow any sized entries
to be moved between directory pairs with a fixed RAM cost.
2018-10-09 23:02:09 -05:00
Christopher Haster
49698e431f Separated type/struct fields in dir entries
The separation of data-structure vs entry type has been implicit for a
while now, and even taken advantage of to simplify the traverse logic.

Explicitely separating the data-struct and entry types allows us to
introduce new data structures (inlined files).
2018-10-09 23:02:01 -05:00
Christopher Haster
0bb1f7af17 Modified release script to create notes only on minor releases
Before, release notes with a list of changes were created every
patch release. Unfortunately, it looks like this will create a lot of
noise on github, with a notification every patch release, which may be
as often as every time a PR is merged.

Rather than creating all of this noise for relatively uninteresting
changes, the script will now stick to simple tags, and create the
release notes only on minor releases.

I think this is what several of you were originally suggesting,
sorry about the journey, at least I learned a lot.
v1.6.2
2018-09-29 12:31:27 -05:00
Christopher Haster
447d89cbd8 Merge pull request #109 from OTAkeys/pr/fix-sign-compare
Fix -Wsign-compare error
2018-09-29 12:29:54 -05:00
Vincent Dupont
28d2d96a83 Fix -Wsign-compare error 2018-09-29 11:33:19 -05:00
Christopher Haster
cb62bf2188 Fixed release script issue with fetching recent tags
Fetching all tags was triggering the pagination system inside the github
API. This prevent version tags from being found.

Modified to use the version tag prefix in the ref lookup, however this
still may cause an issue if there are still enough patch releases to trigger
pagination.

Simpleish solution is to grab the link header to jump to the last page,
since pagination results appear to be in sorted order.
v1.6.1
2018-09-27 14:46:12 -05:00
Christopher Haster
646b1b5a6c Added -Wjump-misses-init and fixed uninitialized warnings 2018-09-26 18:58:54 -05:00
Christopher Haster
1b7a15599e Merge pull request #106 from conkerkh/master
If stats file doesn't exist lfs_emubd_create will fail.
2018-09-26 18:58:34 -05:00
Christopher Haster
e5a6938faf Fixed possible infinite loop in deorphan step
Normally, the linked-list of directory pairs should terminate at a null
pointer. However, it is possible if the filesystem is corrupted, that
that this linked-list forms a cycle.

This should never happen with littlefs's power resilience, but if it does
we should recover appropriately.

Modified lfs_deorphan to notice if we have a cycle and return
LFS_ERR_CORRUPT in that situation.

Found by kneko715
2018-09-26 18:58:11 -05:00
Chris
6ad544f3f3 If stats file doesn't exist lfs_emubd_create will fail.
This will create default stats file if it doesn't exist.
2018-09-26 18:24:58 -05:00
Christopher Haster
3419284689 Fixed issue with corruption due to different cache sizes
The lfs_cache_zero function that was recently added assumed a single cache
size, which is incorrect. This would cause a buffer overflow if
read_size != prog_size.

Since lfs_cache_zero is only used for scrubbing prog caches, the fix
here is to use lfs_cache_drop instead on read caches. Info in read
caches should never make its way to disk.

Found by nstcl
2018-09-04 13:57:22 -05:00
Christopher Haster
510cd13df9 Bumped minor version to v1.6 v1.6.0 2018-07-27 15:59:18 -05:00
Christopher Haster
f5e0539951 Fixed issue with release script non-standard version tags 2018-07-27 15:20:00 -05:00
Christopher Haster
066448055c Moved SPDX and license info into README
This makes is a bit easier to find the description about the SPDX tags,
and fixes the issue where GitHub doesn't detect the license text.
2018-07-27 14:02:38 -05:00
Christopher Haster
d66723ccfd Merge pull request #81 from ARMmbed/simple-versioning
Simplified release process based on feedback
2018-07-27 14:02:23 -05:00
Christopher Haster
0234c77102 Simplified release process based on feedback
Previously, littlefs had mutable versions. That is, anytime a new commit
landed on master, the bot would update the most recent version to
contain the patch. The idea was that this would make sure users always
had the most recent bug fixes. Immutable snapshots could be accessed
through the git hashes.

However, at this point multiple developers have pointed out that this is
confusing, with mutable versions being non-standard and surprising.

This new release process adopts SemVer in its entirety, with
incrementing patch numbers and immutable versions.

When a new commit lands on master:
1. The major/minor version is taken from lfs.h
2. The most recent patch version is looked up on GitHub and incremented
3. A changelog is built out of the commits to the previous version
4. A new release is created on GitHub

Additionally, any commits that land while CI is still running are
coalesced together. Which means multiple PRs can land in a single
release.
2018-07-25 14:21:58 -05:00
Christopher Haster
84adead98b Merge pull request #80 from FreddieChopin/fix-memory-leaks
Fix memory leaks
v1.5
2018-07-19 17:30:48 -05:00
Freddie Chopin
0422c55b81 Fix memory leaks in lfs_mount and lfs_format
Squashed:
- Change lfs_deinit() return to void to simplify error handling
- Move lfs_deinit() before lfs_init()
- Fix memory leaks in lfs_init()
- Fix memory leaks in lfs_format()
- Fix memory leaks in lfs_mount()
2018-07-19 16:54:38 -05:00
Christopher Haster
11ad3a2414 Merge pull request #76 from ARMmbed/fix-corrupt-read
Add handling for corrupt as initial state of blocks
2018-07-17 20:32:33 -05:00
Christopher Haster
16318d003f Merge pull request #58 from dpgeorge/file-open-no-malloc
Added possibility to open multiple files with LFS_NO_MALLOC enabled
2018-07-17 20:31:20 -05:00
Damien George
961fab70c3 Added file config structure and lfs_file_opencfg
The optional config structure options up the possibility of adding
file-level configuration in a backwards compatible manner.

Also adds possibility to open multiple files with LFS_NO_MALLOC
enabled thanks to dpgeorge

Also bumped minor version to v1.5
2018-07-17 18:32:18 -05:00
Christopher Haster
041e90a1ca Added handling for corrupt as initial state of blocks
Before this, littlefs incorrectly assumed corrupt blocks were only the result
of our own modification. This would be fine for most cases of freshly
erased storage, but for storage with block-level ECC this wasn't always
true.

Fortunately, it's quite easy for littlefs to handle this case correctly,
as long as corrupt storage always reports that it is corrupt, which for
most forms of ECC is the case unless we perform a write on the storage.

found by rojer
2018-07-16 15:33:52 -05:00
Christopher Haster
f94d233deb Merge pull request #74 from FreddieChopin/cxx-guards
Add C++ guards to public headers
v1.4
2018-07-13 10:55:16 -05:00
Freddie Chopin
577d777c20 Add C++ guards to public headers
Fixes #53
Fixes #32
2018-07-13 09:34:49 +02:00
Christopher Haster
c72d25203c Merge pull request #73 from FreddieChopin/fix-format-specifiers
Use PRIu32 and PRIx32 format specifiers to fix warnings
2018-07-12 16:54:13 -05:00
Freddie Chopin
7e67f9324e Use PRIu32 and PRIx32 format specifiers to fix warnings
When using "%d" or "%x" with uint32_t types, arm-none-eabi-gcc reports
warnings like below:

-- >8 -- >8 -- >8 -- >8 -- >8 -- >8 --

In file included from lfs.c:8:
lfs_util.h:45:12: warning: format '%d' expects argument of type 'int', but argument 4 has type 'lfs_block_t' {aka 'long unsigned int'} [-Wformat=]
     printf("lfs debug:%d: " fmt "\n", __LINE__, __VA_ARGS__)
            ^~~~~~~~~~~~~~~~
lfs.c:2512:21: note: in expansion of macro 'LFS_DEBUG'
                     LFS_DEBUG("Found partial move %d %d",
                     ^~~~~~~~~
lfs.c:2512:55: note: format string is defined here
                     LFS_DEBUG("Found partial move %d %d",
                                                      ~^
                                                      %ld

-- >8 -- >8 -- >8 -- >8 -- >8 -- >8 --

Fix this by replacing "%d" and "%x" with `"%" PRIu32` and `"%" PRIx32`.
2018-07-11 12:32:21 +02:00