mirror of
				https://github.com/eledio-devices/thirdparty-littlefs.git
				synced 2025-10-31 08:42:40 +01:00 
			
		
		
		
	
			
				
					
						
					
					b9d0695e0a026d144772480f339e577782729949
				
			
			
		
	
	
		
			3 Commits
		
	
	
	| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|  | a5d614fbfb | Added tests for power-cycled-relocations and fixed the bugs that fell out The power-cycled-relocation test with random renames has been the most
aggressive test applied to littlefs so far, with:
- Random nested directory creation
- Random nested directory removal
- Random nested directory renames (this could make the
  threaded linked-list very interesting)
- Relocating blocks every write (maximum wear-leveling)
- Incrementally cycling power every write
Also added a couple other tests to test_orphans and test_relocations.
The good news is the added testing worked well, it found quite a number
of complex and subtle bugs that have been difficult to find.
1. It's actually possible for our parent to be relocated and go out of
   sync in lfs_mkdir. This can happen if our predecessor's predecessor
   is our parent as we are threading ourselves into the filesystem's
   threaded list. (note this doesn't happen if our predecessor _is_ our
   parent, as we then update our parent in a single commit).
   This is annoying because it only happens if our parent is a long (>1
   pair) directory, otherwise we wouldn't need to catch relocations.
   Fortunately we can reuse the internal open file/dir linked-list to
   catch relocations easily, as long as we're careful to unhook our
   parent whenever lfs_mkdir returns.
2. Even more surprising, it's possible for the child in lfs_remove
   to be relocated while we delete the entry from our parent. This
   can happen if we are our own parent's predecessor, since we need
   to be updated then if our parent relocates.
   Fortunately we can also hook into the open linked-list here.
   Note this same issue was present in lfs_rename.
   Fortunately, this means now all fetched dirs are hooked into the
   open linked-list if they are needed across a commit. This means
   we shouldn't need assumptions about tree movement for correctness.
3. lfs_rename("deja/vu", "deja/vu") with the same source and destination
   was broken and tried to delete the entry twice.
4. Managing gstate deltas when we lose power during relocations was
   broken. And unfortunately complicated.
   The issue happens when we lose power during a relocation while
   removing a directory.
   When we remove a directory, we need to move the contents of its
   gstate delta to another directory or we'll corrupt littlefs gstate.
   (gstate is an xor of all deltas on the filesystem). We used to just
   xor the gstate into our parent's gstate, however this isn't correct.
   The gstate isn't built out of the directory tree, but rather out of
   the threaded linked-list (which exists to make collecting this
   gstate efficient).
   Because we have to remove our dir in two operations, there's a point
   were both the updated parent and child can exist in threaded
   linked-list and duplicate the child's gstate delta.
     .--------.
   ->| parent |-.
     | gstate | |
   .-|   a    |-'
   | '--------'
   |     X <- child is orphaned
   | .--------.
   '>| child  |->
     | gstate |
     |   a    |
     '--------'
   What we need to do is save our child's gstate and only give it to our
   predecessor, since this finalizes the removal of the child.
   However we still need to make valid updates to the gstate to mark
   that we've created an orphan when we start removing the child.
   This led to a small rework of how the gstate is handled. Now we have
   a separation of the gpending state that should be written out ASAP
   and the gdelta state that is collected from orphans awaiting
   deletion.
5. lfs_deorphan wasn't actually able to handle deorphaning/desyncing
   more than one orphan after a power-cycle. Having more than one orphan
   is very rare, but of course very possible. Fortunately this was just
   a mistake with using a break the in the deorphan, perhaps left from
   v1 where multiple orphans weren't possible?
   Note that we use a continue to force a refetch of the orphaned block.
   This is needed in the case of a half-orphan, since the fetched
   half-orphan may have an outdated tail pointer. | ||
|  | f4b6a6b328 | Fixed issues with neighbor updates during moves The root of the problem was some assumptions about what tags could be sent to lfs_dir_commit. - The first assumption is that there could be only one splice (create/delete) tag at a time, which is trivially broken by the core commit in lfs_rename. - The second assumption is that there is at most one create and one delete in a single commit. This is less obvious but turns out to not be true in the case that we rename a file such that it overwrites another file in the same directory (1 delete for source file, 1 delete for destination). - The third assumption was that there was an ordering to the delete/creates passed to lfs_dir_commit. It may be possible to force all deletes to follow creates by rearranging the tags in lfs_rename, but this risks overflowing tag ids. The way the lfs_dir_commit first collected the "deletetag" and "createtag" broke all three of these assumptions. And because we lose the ordering information we can no longer apply the directory changes to open files correctly. The file ids may be shifted in a way that doesn't reflect the actual operations on disk. These problems were made worst by lfs_dir_commit cleaning up moves implicitly, which also creates deletes implicitly. While cleaning up moves in lfs_dir_commit may save some code size, it makes the commit logic much more difficult to implement correctly. This bug turned into pulling out a dead tree stump, roots and all. I ended up reworking how lfs_dir_commit updates open files so that it has less assumptions, now it just traverses the commit tags multiple times in order to update file ids after a successful commit in the correct order. This also got rid of the dir copy by carefully updating split dirs after all files have an up-to-date copy of the original dir. I also just removed the implicit move cleanup. It turns out the only commits that can occur before we have cleaned up the move is in lfs_fs_relocate, so it was simple enough to explicitly handle this case when we update our parent and pred during a relocate. Cases where we may need to fix moves: - In lfs_rename when we move a file/dir - In lfs_demove if we lose power - In lfs_fs_relocate if we have to relocate our parent and we find it had a pending move (or else the move will be outdated) - In lfs_fs_relocate if we have to relocate our predecessor and we find it had a pending move (or else the move will be outdated) Note the two cases in lfs_fs_relocate may be recursive. But lfs_fs_relocate can only trigger other lfs_fs_relocates so it's not possible for pending moves to spill out into other filesystem commits And of couse, I added several tests to cover these situations. Hopefully the rename-with-open-files logic should be fairly locked down now. found with initial fix by eastmoutain | ||
|  | 9453ebd15d | Added/improved disk-reading debug scripts Also fixed a bug in dir splitting when there's a large number of open
files, which was the main reason I was trying to make it easier to debug
disk images.
One part of the recent test changes was to move away from the
file-per-block emubd and instead simulate storage with a single
contiguous file. The file-per-block format was marginally useful
at the beginning, but as the remaining bugs get more subtle, it
becomes more useful to inspect littlefs through scripts that
make the underlying metadata more human-readable.
The key benefit of switching to a contiguous file is these same
scripts can be reused for real disk images and can even read through
/dev/sdb or similar.
- ./scripts/readblock.py disk block_size block
  off       data
  00000000: 71 01 00 00 f0 0f ff f7 6c 69 74 74 6c 65 66 73  q.......littlefs
  00000010: 2f e0 00 10 00 00 02 00 00 02 00 00 00 04 00 00  /...............
  00000020: ff 00 00 00 ff ff ff 7f fe 03 00 00 20 00 04 19  ...............
  00000030: 61 00 00 0c 00 62 20 30 0c 09 a0 01 00 00 64 00  a....b 0......d.
  ...
  readblock.py prints a hex dump of a given block on disk. It's basically
  just "dd if=disk bs=block_size count=1 skip=block | xxd -g1 -" but with
  less typing.
- ./scripts/readmdir.py disk block_size block1 block2
  off       tag       type            id  len  data (truncated)
  0000003b: 0020000a  dir              0   10  63 6f 6c 64 63 6f 66 66 coldcoff
  00000049: 20000008  dirstruct        0    8  02 02 00 00 03 02 00 00 ........
  00000008: 00200409  dir              1    9  68 6f 74 63 6f 66 66 65 hotcoffe
  00000015: 20000408  dirstruct        1    8  fe 01 00 00 ff 01 00 00 ........
  readmdir.py prints info about the tags in a metadata pair on disk. It
  can print the currently active tags as well as the raw log of the
  metadata pair.
- ./scripts/readtree.py disk block_size
  superblock "littlefs"
    version v2.0
    block_size 512
    block_count 1024
    name_max 255
    file_max 2147483647
    attr_max 1022
  gstate 0x000000000000000000000000
  dir "/"
  mdir {0x0, 0x1} rev 3
  v id 0 superblock "littlefs" inline size 24
  mdir {0x77, 0x78} rev 1
    id 0 dir "coffee" dir {0x1fc, 0x1fd}
  dir "/coffee"
  mdir {0x1fd, 0x1fc} rev 2
    id 0 dir "coldcoffee" dir {0x202, 0x203}
    id 1 dir "hotcoffee" dir {0x1fe, 0x1ff}
  dir "/coffee/coldcoffee"
  mdir {0x202, 0x203} rev 1
  dir "/coffee/warmcoffee"
  mdir {0x200, 0x201} rev 1
  readtree.py parses the littlefs tree and prints info about the
  semantics of what's on disk. This includes the superblock,
  global-state, and directories/metadata-pairs. It doesn't print
  the filesystem tree though, that could be a different tool. |