This has existed for some time in the form of the lfs_traverse
function, however lfs_traverse is relatively unconventional and
has proven to not have been the most intuitive for users.
As pointed out by davidefer, the lookahead pointer modular arithmetic
does not work around integer overflow when the pointer size is not a
multiple of the block count.
To avoid overflow problems, the easy solution is to stop trying to
work around integer overflows and keep the lookahead offset inside the
block device. To make this work, the ack was modified into a resetable
counter that is decremented every block allocation.
As a plus, quite a bit of the allocation logic ended up simplified.
Note: It's still expected to modify lfs_utils.h when porting littlefs
to a new target/system. There's just too much room for system-specific
improvements, such as taking advantage of CRC hardware.
Rather, encouraging modification of lfs_util.h and making it easy to
modify and debug should result in better integration with the consuming
systems.
This just adds a bunch of quality-of-life improvements that should help
development and integration in littlefs.
- Macros that require no side-effects are all-caps
- System includes are only brought in when needed
- Malloc/free wrappers
- LFS_NO_* checks for quickly disabling things at the command line
- At least a little-bit more docs
Rather than tracking all in-flight blocks blocks during a lookahead,
littlefs uses an ack scheme to mark the first allocated block that
hasn't reached the disk yet. littlefs assumes all blocks since the
last ack are bad or in-flight, and uses this to know when it's out
of storage.
However, these unacked allocations were still being populated in the
lookahead buffer. If the whole block device fits in the lookahead
buffer, _and_ littlefs managed to scan around the whole storage while
an unacked block was still in-flight, it would assume the block was
free and misallocate it.
The fix is to only fill the lookahead buffer up to the last ack.
The internal free structure was restructured to simplify the runtime
calculation of lookahead size.
- Write on read-only file to return LFS_ERR_BADF
- Renaming directory onto file to return LFS_ERR_NOTEMPTY
- Changed LFS_ERR_INVAL in lfs_file_seek to assert
An annoying part of filesystems is that the software library can change
independently of the on-disk structures. For this reason versioning is
very important, and must be handled separately for the software and
on-disk parts.
In this patch, littlefs provides two version numbers at compile time,
with major and minor parts, in the form of 6 macros.
LFS_VERSION // Library version, uint32_t encoded
LFS_VERSION_MAJOR // Major - Backwards incompatible changes
LFS_VERSION_MINOR // Minor - Feature additions
LFS_DISK_VERSION // On-disk version, uint32_t encoded
LFS_DISK_VERSION_MAJOR // Major - Backwards incompatible changes
LFS_DISK_VERSION_MINOR // Minor - Feature additions
Note that littlefs will error if it finds a major version number that
is different, or a minor version number that has regressed.
As a copy-on-write filesystem, the truncate function is a very nice
function to have, as it can take advantage of reusing the data already
written out to disk.
littlefs had an unwritten assumption that the block device's program
size would be a multiple of the read size, and the block size would
be a multiple of the program size. This has already caused confusion
for users. Added a note and assert to catch unexpected geometries
early.
Also found that the prog/erase functions indicated they must return
LFS_ERR_CORRUPT to catch bad blocks. This is no longer true as errors
are found by CRC.
As it was, if a user operated on a directory while at the same
time iterating over the directory, the directory objects could
fall out of sync. In the best case, files may be skipped while
removing everything in a file, in the worst case, a very poorly
timed directory relocate could be missed.
Simple fix is to add the same directory tracking that is currently
in use for files, at a small code+complexity cost.
Short story, files are no longer committed to directories during
file sync/close if the last write did not complete successfully.
This avoids a set of interesting user-experience issues related
to the end-of-life behaviour of the filesystem.
As a filesystem approaches end-of-life, the chances of running into
LFS_ERR_NOSPC grows rather quickly. Since this condition occurs after
at the end of a devices life, it's likely that operating in these
conditions hasn't been tested thoroughly.
In the specific case of file-writes, you can hit an LFS_ERR_NOSPC after
parts of the file have been written out. If the program simply continues
and closes the file, the file is written out half completed. Since
littlefs has a strong garuntee the prevents half-writes, it's unlikely
this state of the file would be expected.
To make things worse, since close is also responsible for memory
cleanup, it's actually _impossible_ to continue working as it was
without leaking memory.
By prevent the file commits, end-of-life behaviour should at least retain
a previous copy of the filesystem without any surprises.
The littlefs allows buffers to be passed statically in the case
that a system does not have a heap. Unfortunately, this means we
can't round up in the case of an unaligned lookahead buffer.
Double unfortunately, rounding down after clamping to the block device
size could result in a lookahead of zero for block devices < 32 blocks
large.
The assert in littlefs does catch this case, but rounding down prevents
support for < 32 block devices.
The solution is to simply require a 32-bit aligned buffer with an
assert. This avoids runtime problems while allowing a user to pass
in the correct buffer for < 32 block devices. Rounding up can be
handled at higher API levels.