mirror of
				https://github.com/eledio-devices/thirdparty-littlefs.git
				synced 2025-10-31 08:42:40 +01:00 
			
		
		
		
	The power-cycled-relocation test with random renames has been the most
aggressive test applied to littlefs so far, with:
- Random nested directory creation
- Random nested directory removal
- Random nested directory renames (this could make the
  threaded linked-list very interesting)
- Relocating blocks every write (maximum wear-leveling)
- Incrementally cycling power every write
Also added a couple other tests to test_orphans and test_relocations.
The good news is the added testing worked well, it found quite a number
of complex and subtle bugs that have been difficult to find.
1. It's actually possible for our parent to be relocated and go out of
   sync in lfs_mkdir. This can happen if our predecessor's predecessor
   is our parent as we are threading ourselves into the filesystem's
   threaded list. (note this doesn't happen if our predecessor _is_ our
   parent, as we then update our parent in a single commit).
   This is annoying because it only happens if our parent is a long (>1
   pair) directory, otherwise we wouldn't need to catch relocations.
   Fortunately we can reuse the internal open file/dir linked-list to
   catch relocations easily, as long as we're careful to unhook our
   parent whenever lfs_mkdir returns.
2. Even more surprising, it's possible for the child in lfs_remove
   to be relocated while we delete the entry from our parent. This
   can happen if we are our own parent's predecessor, since we need
   to be updated then if our parent relocates.
   Fortunately we can also hook into the open linked-list here.
   Note this same issue was present in lfs_rename.
   Fortunately, this means now all fetched dirs are hooked into the
   open linked-list if they are needed across a commit. This means
   we shouldn't need assumptions about tree movement for correctness.
3. lfs_rename("deja/vu", "deja/vu") with the same source and destination
   was broken and tried to delete the entry twice.
4. Managing gstate deltas when we lose power during relocations was
   broken. And unfortunately complicated.
   The issue happens when we lose power during a relocation while
   removing a directory.
   When we remove a directory, we need to move the contents of its
   gstate delta to another directory or we'll corrupt littlefs gstate.
   (gstate is an xor of all deltas on the filesystem). We used to just
   xor the gstate into our parent's gstate, however this isn't correct.
   The gstate isn't built out of the directory tree, but rather out of
   the threaded linked-list (which exists to make collecting this
   gstate efficient).
   Because we have to remove our dir in two operations, there's a point
   were both the updated parent and child can exist in threaded
   linked-list and duplicate the child's gstate delta.
     .--------.
   ->| parent |-.
     | gstate | |
   .-|   a    |-'
   | '--------'
   |     X <- child is orphaned
   | .--------.
   '>| child  |->
     | gstate |
     |   a    |
     '--------'
   What we need to do is save our child's gstate and only give it to our
   predecessor, since this finalizes the removal of the child.
   However we still need to make valid updates to the gstate to mark
   that we've created an orphan when we start removing the child.
   This led to a small rework of how the gstate is handled. Now we have
   a separation of the gpending state that should be written out ASAP
   and the gdelta state that is collected from orphans awaiting
   deletion.
5. lfs_deorphan wasn't actually able to handle deorphaning/desyncing
   more than one orphan after a power-cycle. Having more than one orphan
   is very rare, but of course very possible. Fortunately this was just
   a mistake with using a break the in the deorphan, perhaps left from
   v1 where multiple orphans weren't possible?
   Note that we use a continue to force a refetch of the orphaned block.
   This is needed in the case of a half-orphan, since the fetched
   half-orphan may have an outdated tail pointer.
		
	
		
			
				
	
	
		
			656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The little filesystem
 | |
|  *
 | |
|  * Copyright (c) 2017, Arm Limited. All rights reserved.
 | |
|  * SPDX-License-Identifier: BSD-3-Clause
 | |
|  */
 | |
| #ifndef LFS_H
 | |
| #define LFS_H
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /// Version info ///
 | |
| 
 | |
| // Software library version
 | |
| // Major (top-nibble), incremented on backwards incompatible changes
 | |
| // Minor (bottom-nibble), incremented on feature additions
 | |
| #define LFS_VERSION 0x00020001
 | |
| #define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
 | |
| #define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >>  0))
 | |
| 
 | |
| // Version of On-disk data structures
 | |
| // Major (top-nibble), incremented on backwards incompatible changes
 | |
| // Minor (bottom-nibble), incremented on feature additions
 | |
| #define LFS_DISK_VERSION 0x00020000
 | |
| #define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
 | |
| #define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >>  0))
 | |
| 
 | |
| 
 | |
| /// Definitions ///
 | |
| 
 | |
| // Type definitions
 | |
| typedef uint32_t lfs_size_t;
 | |
| typedef uint32_t lfs_off_t;
 | |
| 
 | |
| typedef int32_t  lfs_ssize_t;
 | |
| typedef int32_t  lfs_soff_t;
 | |
| 
 | |
| typedef uint32_t lfs_block_t;
 | |
| 
 | |
| // Maximum name size in bytes, may be redefined to reduce the size of the
 | |
| // info struct. Limited to <= 1022. Stored in superblock and must be
 | |
| // respected by other littlefs drivers.
 | |
| #ifndef LFS_NAME_MAX
 | |
| #define LFS_NAME_MAX 255
 | |
| #endif
 | |
| 
 | |
| // Maximum size of a file in bytes, may be redefined to limit to support other
 | |
| // drivers. Limited on disk to <= 4294967296. However, above 2147483647 the
 | |
| // functions lfs_file_seek, lfs_file_size, and lfs_file_tell will return
 | |
| // incorrect values due to using signed integers. Stored in superblock and
 | |
| // must be respected by other littlefs drivers.
 | |
| #ifndef LFS_FILE_MAX
 | |
| #define LFS_FILE_MAX 2147483647
 | |
| #endif
 | |
| 
 | |
| // Maximum size of custom attributes in bytes, may be redefined, but there is
 | |
| // no real benefit to using a smaller LFS_ATTR_MAX. Limited to <= 1022.
 | |
| #ifndef LFS_ATTR_MAX
 | |
| #define LFS_ATTR_MAX 1022
 | |
| #endif
 | |
| 
 | |
| // Possible error codes, these are negative to allow
 | |
| // valid positive return values
 | |
| enum lfs_error {
 | |
|     LFS_ERR_OK          = 0,    // No error
 | |
|     LFS_ERR_IO          = -5,   // Error during device operation
 | |
|     LFS_ERR_CORRUPT     = -84,  // Corrupted
 | |
|     LFS_ERR_NOENT       = -2,   // No directory entry
 | |
|     LFS_ERR_EXIST       = -17,  // Entry already exists
 | |
|     LFS_ERR_NOTDIR      = -20,  // Entry is not a dir
 | |
|     LFS_ERR_ISDIR       = -21,  // Entry is a dir
 | |
|     LFS_ERR_NOTEMPTY    = -39,  // Dir is not empty
 | |
|     LFS_ERR_BADF        = -9,   // Bad file number
 | |
|     LFS_ERR_FBIG        = -27,  // File too large
 | |
|     LFS_ERR_INVAL       = -22,  // Invalid parameter
 | |
|     LFS_ERR_NOSPC       = -28,  // No space left on device
 | |
|     LFS_ERR_NOMEM       = -12,  // No more memory available
 | |
|     LFS_ERR_NOATTR      = -61,  // No data/attr available
 | |
|     LFS_ERR_NAMETOOLONG = -36,  // File name too long
 | |
| };
 | |
| 
 | |
| // File types
 | |
| enum lfs_type {
 | |
|     // file types
 | |
|     LFS_TYPE_REG            = 0x001,
 | |
|     LFS_TYPE_DIR            = 0x002,
 | |
| 
 | |
|     // internally used types
 | |
|     LFS_TYPE_SPLICE         = 0x400,
 | |
|     LFS_TYPE_NAME           = 0x000,
 | |
|     LFS_TYPE_STRUCT         = 0x200,
 | |
|     LFS_TYPE_USERATTR       = 0x300,
 | |
|     LFS_TYPE_FROM           = 0x100,
 | |
|     LFS_TYPE_TAIL           = 0x600,
 | |
|     LFS_TYPE_GLOBALS        = 0x700,
 | |
|     LFS_TYPE_CRC            = 0x500,
 | |
| 
 | |
|     // internally used type specializations
 | |
|     LFS_TYPE_CREATE         = 0x401,
 | |
|     LFS_TYPE_DELETE         = 0x4ff,
 | |
|     LFS_TYPE_SUPERBLOCK     = 0x0ff,
 | |
|     LFS_TYPE_DIRSTRUCT      = 0x200,
 | |
|     LFS_TYPE_CTZSTRUCT      = 0x202,
 | |
|     LFS_TYPE_INLINESTRUCT   = 0x201,
 | |
|     LFS_TYPE_SOFTTAIL       = 0x600,
 | |
|     LFS_TYPE_HARDTAIL       = 0x601,
 | |
|     LFS_TYPE_MOVESTATE      = 0x7ff,
 | |
| 
 | |
|     // internal chip sources
 | |
|     LFS_FROM_NOOP           = 0x000,
 | |
|     LFS_FROM_MOVE           = 0x101,
 | |
|     LFS_FROM_USERATTRS      = 0x102,
 | |
| };
 | |
| 
 | |
| // File open flags
 | |
| enum lfs_open_flags {
 | |
|     // open flags
 | |
|     LFS_O_RDONLY = 1,         // Open a file as read only
 | |
|     LFS_O_WRONLY = 2,         // Open a file as write only
 | |
|     LFS_O_RDWR   = 3,         // Open a file as read and write
 | |
|     LFS_O_CREAT  = 0x0100,    // Create a file if it does not exist
 | |
|     LFS_O_EXCL   = 0x0200,    // Fail if a file already exists
 | |
|     LFS_O_TRUNC  = 0x0400,    // Truncate the existing file to zero size
 | |
|     LFS_O_APPEND = 0x0800,    // Move to end of file on every write
 | |
| 
 | |
|     // internally used flags
 | |
|     LFS_F_DIRTY   = 0x010000, // File does not match storage
 | |
|     LFS_F_WRITING = 0x020000, // File has been written since last flush
 | |
|     LFS_F_READING = 0x040000, // File has been read since last flush
 | |
|     LFS_F_ERRED   = 0x080000, // An error occured during write
 | |
|     LFS_F_INLINE  = 0x100000, // Currently inlined in directory entry
 | |
|     LFS_F_OPENED  = 0x200000, // File has been opened
 | |
| };
 | |
| 
 | |
| // File seek flags
 | |
| enum lfs_whence_flags {
 | |
|     LFS_SEEK_SET = 0,   // Seek relative to an absolute position
 | |
|     LFS_SEEK_CUR = 1,   // Seek relative to the current file position
 | |
|     LFS_SEEK_END = 2,   // Seek relative to the end of the file
 | |
| };
 | |
| 
 | |
| 
 | |
| // Configuration provided during initialization of the littlefs
 | |
| struct lfs_config {
 | |
|     // Opaque user provided context that can be used to pass
 | |
|     // information to the block device operations
 | |
|     void *context;
 | |
| 
 | |
|     // Read a region in a block. Negative error codes are propogated
 | |
|     // to the user.
 | |
|     int (*read)(const struct lfs_config *c, lfs_block_t block,
 | |
|             lfs_off_t off, void *buffer, lfs_size_t size);
 | |
| 
 | |
|     // Program a region in a block. The block must have previously
 | |
|     // been erased. Negative error codes are propogated to the user.
 | |
|     // May return LFS_ERR_CORRUPT if the block should be considered bad.
 | |
|     int (*prog)(const struct lfs_config *c, lfs_block_t block,
 | |
|             lfs_off_t off, const void *buffer, lfs_size_t size);
 | |
| 
 | |
|     // Erase a block. A block must be erased before being programmed.
 | |
|     // The state of an erased block is undefined. Negative error codes
 | |
|     // are propogated to the user.
 | |
|     // May return LFS_ERR_CORRUPT if the block should be considered bad.
 | |
|     int (*erase)(const struct lfs_config *c, lfs_block_t block);
 | |
| 
 | |
|     // Sync the state of the underlying block device. Negative error codes
 | |
|     // are propogated to the user.
 | |
|     int (*sync)(const struct lfs_config *c);
 | |
| 
 | |
|     // Minimum size of a block read. All read operations will be a
 | |
|     // multiple of this value.
 | |
|     lfs_size_t read_size;
 | |
| 
 | |
|     // Minimum size of a block program. All program operations will be a
 | |
|     // multiple of this value.
 | |
|     lfs_size_t prog_size;
 | |
| 
 | |
|     // Size of an erasable block. This does not impact ram consumption and
 | |
|     // may be larger than the physical erase size. However, non-inlined files
 | |
|     // take up at minimum one block. Must be a multiple of the read
 | |
|     // and program sizes.
 | |
|     lfs_size_t block_size;
 | |
| 
 | |
|     // Number of erasable blocks on the device.
 | |
|     lfs_size_t block_count;
 | |
| 
 | |
|     // Number of erase cycles before littlefs evicts metadata logs and moves 
 | |
|     // the metadata to another block. Suggested values are in the
 | |
|     // range 100-1000, with large values having better performance at the cost
 | |
|     // of less consistent wear distribution.
 | |
|     //
 | |
|     // Set to -1 to disable block-level wear-leveling.
 | |
|     int32_t block_cycles;
 | |
| 
 | |
|     // Size of block caches. Each cache buffers a portion of a block in RAM.
 | |
|     // The littlefs needs a read cache, a program cache, and one additional
 | |
|     // cache per file. Larger caches can improve performance by storing more
 | |
|     // data and reducing the number of disk accesses. Must be a multiple of
 | |
|     // the read and program sizes, and a factor of the block size.
 | |
|     lfs_size_t cache_size;
 | |
| 
 | |
|     // Size of the lookahead buffer in bytes. A larger lookahead buffer
 | |
|     // increases the number of blocks found during an allocation pass. The
 | |
|     // lookahead buffer is stored as a compact bitmap, so each byte of RAM
 | |
|     // can track 8 blocks. Must be a multiple of 8.
 | |
|     lfs_size_t lookahead_size;
 | |
| 
 | |
|     // Optional statically allocated read buffer. Must be cache_size.
 | |
|     // By default lfs_malloc is used to allocate this buffer.
 | |
|     void *read_buffer;
 | |
| 
 | |
|     // Optional statically allocated program buffer. Must be cache_size.
 | |
|     // By default lfs_malloc is used to allocate this buffer.
 | |
|     void *prog_buffer;
 | |
| 
 | |
|     // Optional statically allocated lookahead buffer. Must be lookahead_size
 | |
|     // and aligned to a 32-bit boundary. By default lfs_malloc is used to
 | |
|     // allocate this buffer.
 | |
|     void *lookahead_buffer;
 | |
| 
 | |
|     // Optional upper limit on length of file names in bytes. No downside for
 | |
|     // larger names except the size of the info struct which is controlled by
 | |
|     // the LFS_NAME_MAX define. Defaults to LFS_NAME_MAX when zero. Stored in
 | |
|     // superblock and must be respected by other littlefs drivers.
 | |
|     lfs_size_t name_max;
 | |
| 
 | |
|     // Optional upper limit on files in bytes. No downside for larger files
 | |
|     // but must be <= LFS_FILE_MAX. Defaults to LFS_FILE_MAX when zero. Stored
 | |
|     // in superblock and must be respected by other littlefs drivers.
 | |
|     lfs_size_t file_max;
 | |
| 
 | |
|     // Optional upper limit on custom attributes in bytes. No downside for
 | |
|     // larger attributes size but must be <= LFS_ATTR_MAX. Defaults to
 | |
|     // LFS_ATTR_MAX when zero.
 | |
|     lfs_size_t attr_max;
 | |
| };
 | |
| 
 | |
| // File info structure
 | |
| struct lfs_info {
 | |
|     // Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
 | |
|     uint8_t type;
 | |
| 
 | |
|     // Size of the file, only valid for REG files. Limited to 32-bits.
 | |
|     lfs_size_t size;
 | |
| 
 | |
|     // Name of the file stored as a null-terminated string. Limited to
 | |
|     // LFS_NAME_MAX+1, which can be changed by redefining LFS_NAME_MAX to
 | |
|     // reduce RAM. LFS_NAME_MAX is stored in superblock and must be
 | |
|     // respected by other littlefs drivers.
 | |
|     char name[LFS_NAME_MAX+1];
 | |
| };
 | |
| 
 | |
| // Custom attribute structure, used to describe custom attributes
 | |
| // committed atomically during file writes.
 | |
| struct lfs_attr {
 | |
|     // 8-bit type of attribute, provided by user and used to
 | |
|     // identify the attribute
 | |
|     uint8_t type;
 | |
| 
 | |
|     // Pointer to buffer containing the attribute
 | |
|     void *buffer;
 | |
| 
 | |
|     // Size of attribute in bytes, limited to LFS_ATTR_MAX
 | |
|     lfs_size_t size;
 | |
| };
 | |
| 
 | |
| // Optional configuration provided during lfs_file_opencfg
 | |
| struct lfs_file_config {
 | |
|     // Optional statically allocated file buffer. Must be cache_size.
 | |
|     // By default lfs_malloc is used to allocate this buffer.
 | |
|     void *buffer;
 | |
| 
 | |
|     // Optional list of custom attributes related to the file. If the file
 | |
|     // is opened with read access, these attributes will be read from disk
 | |
|     // during the open call. If the file is opened with write access, the
 | |
|     // attributes will be written to disk every file sync or close. This
 | |
|     // write occurs atomically with update to the file's contents.
 | |
|     //
 | |
|     // Custom attributes are uniquely identified by an 8-bit type and limited
 | |
|     // to LFS_ATTR_MAX bytes. When read, if the stored attribute is smaller
 | |
|     // than the buffer, it will be padded with zeros. If the stored attribute
 | |
|     // is larger, then it will be silently truncated. If the attribute is not
 | |
|     // found, it will be created implicitly.
 | |
|     struct lfs_attr *attrs;
 | |
| 
 | |
|     // Number of custom attributes in the list
 | |
|     lfs_size_t attr_count;
 | |
| };
 | |
| 
 | |
| 
 | |
| /// internal littlefs data structures ///
 | |
| typedef struct lfs_cache {
 | |
|     lfs_block_t block;
 | |
|     lfs_off_t off;
 | |
|     lfs_size_t size;
 | |
|     uint8_t *buffer;
 | |
| } lfs_cache_t;
 | |
| 
 | |
| typedef struct lfs_mdir {
 | |
|     lfs_block_t pair[2];
 | |
|     uint32_t rev;
 | |
|     lfs_off_t off;
 | |
|     uint32_t etag;
 | |
|     uint16_t count;
 | |
|     bool erased;
 | |
|     bool split;
 | |
|     lfs_block_t tail[2];
 | |
| } lfs_mdir_t;
 | |
| 
 | |
| // littlefs directory type
 | |
| typedef struct lfs_dir {
 | |
|     struct lfs_dir *next;
 | |
|     uint16_t id;
 | |
|     uint8_t type;
 | |
|     lfs_mdir_t m;
 | |
| 
 | |
|     lfs_off_t pos;
 | |
|     lfs_block_t head[2];
 | |
| } lfs_dir_t;
 | |
| 
 | |
| // littlefs file type
 | |
| typedef struct lfs_file {
 | |
|     struct lfs_file *next;
 | |
|     uint16_t id;
 | |
|     uint8_t type;
 | |
|     lfs_mdir_t m;
 | |
| 
 | |
|     struct lfs_ctz {
 | |
|         lfs_block_t head;
 | |
|         lfs_size_t size;
 | |
|     } ctz;
 | |
| 
 | |
|     uint32_t flags;
 | |
|     lfs_off_t pos;
 | |
|     lfs_block_t block;
 | |
|     lfs_off_t off;
 | |
|     lfs_cache_t cache;
 | |
| 
 | |
|     const struct lfs_file_config *cfg;
 | |
| } lfs_file_t;
 | |
| 
 | |
| typedef struct lfs_superblock {
 | |
|     uint32_t version;
 | |
|     lfs_size_t block_size;
 | |
|     lfs_size_t block_count;
 | |
|     lfs_size_t name_max;
 | |
|     lfs_size_t file_max;
 | |
|     lfs_size_t attr_max;
 | |
| } lfs_superblock_t;
 | |
| 
 | |
| typedef struct lfs_gstate {
 | |
|     uint32_t tag;
 | |
|     lfs_block_t pair[2];
 | |
| } lfs_gstate_t;
 | |
| 
 | |
| // The littlefs filesystem type
 | |
| typedef struct lfs {
 | |
|     lfs_cache_t rcache;
 | |
|     lfs_cache_t pcache;
 | |
| 
 | |
|     lfs_block_t root[2];
 | |
|     struct lfs_mlist {
 | |
|         struct lfs_mlist *next;
 | |
|         uint16_t id;
 | |
|         uint8_t type;
 | |
|         lfs_mdir_t m;
 | |
|     } *mlist;
 | |
|     uint32_t seed;
 | |
| 
 | |
|     lfs_gstate_t gstate;
 | |
|     lfs_gstate_t gdisk;
 | |
|     lfs_gstate_t gdelta;
 | |
| 
 | |
|     struct lfs_free {
 | |
|         lfs_block_t off;
 | |
|         lfs_block_t size;
 | |
|         lfs_block_t i;
 | |
|         lfs_block_t ack;
 | |
|         uint32_t *buffer;
 | |
|     } free;
 | |
| 
 | |
|     const struct lfs_config *cfg;
 | |
|     lfs_size_t name_max;
 | |
|     lfs_size_t file_max;
 | |
|     lfs_size_t attr_max;
 | |
| 
 | |
| #ifdef LFS_MIGRATE
 | |
|     struct lfs1 *lfs1;
 | |
| #endif
 | |
| } lfs_t;
 | |
| 
 | |
| 
 | |
| /// Filesystem functions ///
 | |
| 
 | |
| // Format a block device with the littlefs
 | |
| //
 | |
| // Requires a littlefs object and config struct. This clobbers the littlefs
 | |
| // object, and does not leave the filesystem mounted. The config struct must
 | |
| // be zeroed for defaults and backwards compatibility.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_format(lfs_t *lfs, const struct lfs_config *config);
 | |
| 
 | |
| // Mounts a littlefs
 | |
| //
 | |
| // Requires a littlefs object and config struct. Multiple filesystems
 | |
| // may be mounted simultaneously with multiple littlefs objects. Both
 | |
| // lfs and config must be allocated while mounted. The config struct must
 | |
| // be zeroed for defaults and backwards compatibility.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
 | |
| 
 | |
| // Unmounts a littlefs
 | |
| //
 | |
| // Does nothing besides releasing any allocated resources.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_unmount(lfs_t *lfs);
 | |
| 
 | |
| /// General operations ///
 | |
| 
 | |
| // Removes a file or directory
 | |
| //
 | |
| // If removing a directory, the directory must be empty.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_remove(lfs_t *lfs, const char *path);
 | |
| 
 | |
| // Rename or move a file or directory
 | |
| //
 | |
| // If the destination exists, it must match the source in type.
 | |
| // If the destination is a directory, the directory must be empty.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
 | |
| 
 | |
| // Find info about a file or directory
 | |
| //
 | |
| // Fills out the info structure, based on the specified file or directory.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
 | |
| 
 | |
| // Get a custom attribute
 | |
| //
 | |
| // Custom attributes are uniquely identified by an 8-bit type and limited
 | |
| // to LFS_ATTR_MAX bytes. When read, if the stored attribute is smaller than
 | |
| // the buffer, it will be padded with zeros. If the stored attribute is larger,
 | |
| // then it will be silently truncated. If no attribute is found, the error
 | |
| // LFS_ERR_NOATTR is returned and the buffer is filled with zeros.
 | |
| //
 | |
| // Returns the size of the attribute, or a negative error code on failure.
 | |
| // Note, the returned size is the size of the attribute on disk, irrespective
 | |
| // of the size of the buffer. This can be used to dynamically allocate a buffer
 | |
| // or check for existance.
 | |
| lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
 | |
|         uint8_t type, void *buffer, lfs_size_t size);
 | |
| 
 | |
| // Set custom attributes
 | |
| //
 | |
| // Custom attributes are uniquely identified by an 8-bit type and limited
 | |
| // to LFS_ATTR_MAX bytes. If an attribute is not found, it will be
 | |
| // implicitly created.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_setattr(lfs_t *lfs, const char *path,
 | |
|         uint8_t type, const void *buffer, lfs_size_t size);
 | |
| 
 | |
| // Removes a custom attribute
 | |
| //
 | |
| // If an attribute is not found, nothing happens.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type);
 | |
| 
 | |
| 
 | |
| /// File operations ///
 | |
| 
 | |
| // Open a file
 | |
| //
 | |
| // The mode that the file is opened in is determined by the flags, which
 | |
| // are values from the enum lfs_open_flags that are bitwise-ored together.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
 | |
|         const char *path, int flags);
 | |
| 
 | |
| // Open a file with extra configuration
 | |
| //
 | |
| // The mode that the file is opened in is determined by the flags, which
 | |
| // are values from the enum lfs_open_flags that are bitwise-ored together.
 | |
| //
 | |
| // The config struct provides additional config options per file as described
 | |
| // above. The config struct must be allocated while the file is open, and the
 | |
| // config struct must be zeroed for defaults and backwards compatibility.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
 | |
|         const char *path, int flags,
 | |
|         const struct lfs_file_config *config);
 | |
| 
 | |
| // Close a file
 | |
| //
 | |
| // Any pending writes are written out to storage as though
 | |
| // sync had been called and releases any allocated resources.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_close(lfs_t *lfs, lfs_file_t *file);
 | |
| 
 | |
| // Synchronize a file on storage
 | |
| //
 | |
| // Any pending writes are written out to storage.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_sync(lfs_t *lfs, lfs_file_t *file);
 | |
| 
 | |
| // Read data from file
 | |
| //
 | |
| // Takes a buffer and size indicating where to store the read data.
 | |
| // Returns the number of bytes read, or a negative error code on failure.
 | |
| lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
 | |
|         void *buffer, lfs_size_t size);
 | |
| 
 | |
| // Write data to file
 | |
| //
 | |
| // Takes a buffer and size indicating the data to write. The file will not
 | |
| // actually be updated on the storage until either sync or close is called.
 | |
| //
 | |
| // Returns the number of bytes written, or a negative error code on failure.
 | |
| lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
 | |
|         const void *buffer, lfs_size_t size);
 | |
| 
 | |
| // Change the position of the file
 | |
| //
 | |
| // The change in position is determined by the offset and whence flag.
 | |
| // Returns the new position of the file, or a negative error code on failure.
 | |
| lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
 | |
|         lfs_soff_t off, int whence);
 | |
| 
 | |
| // Truncates the size of the file to the specified size
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
 | |
| 
 | |
| // Return the position of the file
 | |
| //
 | |
| // Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
 | |
| // Returns the position of the file, or a negative error code on failure.
 | |
| lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file);
 | |
| 
 | |
| // Change the position of the file to the beginning of the file
 | |
| //
 | |
| // Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_SET)
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file);
 | |
| 
 | |
| // Return the size of the file
 | |
| //
 | |
| // Similar to lfs_file_seek(lfs, file, 0, LFS_SEEK_END)
 | |
| // Returns the size of the file, or a negative error code on failure.
 | |
| lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file);
 | |
| 
 | |
| 
 | |
| /// Directory operations ///
 | |
| 
 | |
| // Create a directory
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_mkdir(lfs_t *lfs, const char *path);
 | |
| 
 | |
| // Open a directory
 | |
| //
 | |
| // Once open a directory can be used with read to iterate over files.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path);
 | |
| 
 | |
| // Close a directory
 | |
| //
 | |
| // Releases any allocated resources.
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir);
 | |
| 
 | |
| // Read an entry in the directory
 | |
| //
 | |
| // Fills out the info structure, based on the specified file or directory.
 | |
| // Returns a positive value on success, 0 at the end of directory,
 | |
| // or a negative error code on failure.
 | |
| int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info);
 | |
| 
 | |
| // Change the position of the directory
 | |
| //
 | |
| // The new off must be a value previous returned from tell and specifies
 | |
| // an absolute offset in the directory seek.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off);
 | |
| 
 | |
| // Return the position of the directory
 | |
| //
 | |
| // The returned offset is only meant to be consumed by seek and may not make
 | |
| // sense, but does indicate the current position in the directory iteration.
 | |
| //
 | |
| // Returns the position of the directory, or a negative error code on failure.
 | |
| lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir);
 | |
| 
 | |
| // Change the position of the directory to the beginning of the directory
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir);
 | |
| 
 | |
| 
 | |
| /// Filesystem-level filesystem operations
 | |
| 
 | |
| // Finds the current size of the filesystem
 | |
| //
 | |
| // Note: Result is best effort. If files share COW structures, the returned
 | |
| // size may be larger than the filesystem actually is.
 | |
| //
 | |
| // Returns the number of allocated blocks, or a negative error code on failure.
 | |
| lfs_ssize_t lfs_fs_size(lfs_t *lfs);
 | |
| 
 | |
| // Traverse through all blocks in use by the filesystem
 | |
| //
 | |
| // The provided callback will be called with each block address that is
 | |
| // currently in use by the filesystem. This can be used to determine which
 | |
| // blocks are in use or how much of the storage is available.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
 | |
| 
 | |
| #ifdef LFS_MIGRATE
 | |
| // Attempts to migrate a previous version of littlefs
 | |
| //
 | |
| // Behaves similarly to the lfs_format function. Attempts to mount
 | |
| // the previous version of littlefs and update the filesystem so it can be
 | |
| // mounted with the current version of littlefs.
 | |
| //
 | |
| // Requires a littlefs object and config struct. This clobbers the littlefs
 | |
| // object, and does not leave the filesystem mounted. The config struct must
 | |
| // be zeroed for defaults and backwards compatibility.
 | |
| //
 | |
| // Returns a negative error code on failure.
 | |
| int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| } /* extern "C" */
 | |
| #endif
 | |
| 
 | |
| #endif
 |