Files
thirdparty-littlefs/lfs.c
Christopher Haster ed674e8414 Added support for the basic file operation
Missing seek, but these are the core filesystem operations
provided by this filesystem:
- Read a file
- Append to a file

Additional work is needed around freeing the previous file, so
right now it's limited to appending to existing files, a real
append only filesystem. Unfortunately the overhead of the free
list with multiple open files is becoming tricky.
2017-03-19 22:25:36 -05:00

827 lines
21 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the MIT license
*/
#include "lfs.h"
#include <string.h>
#include <stdbool.h>
static int lfs_diff(uint32_t a, uint32_t b) {
return (int)(unsigned)(a - b);
}
static uint32_t lfs_crc(const uint8_t *data, lfs_size_t size, uint32_t crc) {
static const uint32_t rtable[16] = {
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c,
};
for (lfs_size_t i = 0; i < size; i++) {
crc = (crc >> 4) ^ rtable[(crc ^ (data[i] >> 0)) & 0xf];
crc = (crc >> 4) ^ rtable[(crc ^ (data[i] >> 4)) & 0xf];
}
return crc;
}
static lfs_error_t lfs_bd_cmp(lfs_t *lfs,
lfs_ino_t ino, lfs_off_t off, lfs_size_t size, const void *d) {
const uint8_t *data = d;
for (int i = 0; i < size; i++) {
uint8_t c;
int err = lfs->ops->read(lfs->bd, (void*)&c, ino, off + i, 1);
if (err) {
return err;
}
if (c != data[i]) {
return false;
}
}
return true;
}
static lfs_error_t lfs_alloc(lfs_t *lfs, lfs_ino_t *ino);
static lfs_error_t lfs_free(lfs_t *lfs, lfs_ino_t ino);
// Next index offset
static lfs_off_t lfs_inext(lfs_t *lfs, lfs_off_t ioff) {
ioff += 1;
lfs_size_t wcount = lfs->info.erase_size/4;
while (ioff % wcount == 0) {
ioff += lfs_min(lfs_ctz(ioff/wcount + 1), wcount-1) + 1;
}
return ioff;
}
static lfs_off_t lfs_toindex(lfs_t *lfs, lfs_off_t off) {
lfs_off_t i = 0;
while (off > 512) {
i = lfs_inext(lfs, i);
off -= 512;
}
return i;
}
// Find index in index chain given its index offset
static lfs_error_t lfs_ifind_block(lfs_t *lfs, lfs_ino_t head,
lfs_size_t icount, lfs_off_t ioff, lfs_ino_t *block) {
lfs_size_t wcount = lfs->info.erase_size/4;
lfs_off_t iitarget = ioff / wcount;
lfs_off_t iicurrent = (icount-1) / wcount;
while (iitarget != iicurrent) {
lfs_size_t skip = lfs_min(
lfs_min(lfs_ctz(iicurrent+1), wcount-1),
lfs_npw2((iitarget ^ iicurrent)+1)-1);
lfs_error_t err = lfs->ops->read(lfs->bd, (void*)&head,
head, 4*skip, 4);
if (err) {
return err;
}
iicurrent -= 1 << skip;
}
*block = head;
return 0;
}
static lfs_error_t lfs_ifind(lfs_t *lfs, lfs_ino_t head,
lfs_size_t icount, lfs_off_t ioff, lfs_ino_t *ino) {
lfs_size_t wcount = lfs->info.erase_size/4;
int err = lfs_ifind_block(lfs, head, icount, ioff, &head);
if (err) {
return err;
}
return lfs->ops->read(lfs->bd, (void*)ino, head, 4*(ioff % wcount), 4);
}
// Append index to index chain, updates head and icount
static lfs_error_t lfs_iappend(lfs_t *lfs, lfs_ino_t *headp,
lfs_size_t *icountp, lfs_ino_t ino) {
lfs_ino_t head = *headp;
lfs_size_t ioff = *icountp - 1;
lfs_size_t wcount = lfs->info.erase_size/4;
ioff += 1;
while (ioff % wcount == 0) {
lfs_ino_t nhead;
lfs_error_t err = lfs_alloc(lfs, &nhead);
if (err) {
return err;
}
lfs_off_t skips = lfs_min(lfs_ctz(ioff/wcount + 1), wcount-2) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
err = lfs->ops->write(lfs->bd, (void*)&head, nhead, 4*i, 4);
if (err) {
return err;
}
if (head && i != skips-1) {
err = lfs->ops->read(lfs->bd, (void*)&head, head, 4*i, 4);
if (err) {
return err;
}
}
}
ioff += skips;
head = nhead;
}
lfs_error_t err = lfs->ops->write(lfs->bd, (void*)&ino,
head, 4*(ioff % wcount), 4);
if (err) {
return err;
}
*headp = head;
*icountp = ioff + 1;
return 0;
}
// Memory managment
static lfs_error_t lfs_alloc(lfs_t *lfs, lfs_ino_t *ino) {
// TODO save slot for freeing?
lfs_error_t err = lfs_ifind(lfs, lfs->free.d.head,
lfs->free.end, lfs->free.off, ino);
if (err) {
return err;
}
lfs->free.off = lfs_inext(lfs, lfs->free.off);
return lfs->ops->erase(lfs->bd, *ino, 0, lfs->info.erase_size);
}
static lfs_error_t lfs_free(lfs_t *lfs, lfs_ino_t ino) {
return lfs_iappend(lfs, &lfs->free.d.head, &lfs->free.end, ino);
}
static lfs_error_t lfs_free_flush(lfs_t *lfs) {
lfs_size_t wcount = lfs->info.erase_size/4;
for (lfs_word_t i = lfs->free.begin / wcount;
i + wcount < lfs->free.off; i += wcount) {
lfs_ino_t block;
int err = lfs_ifind_block(lfs, lfs->free.d.head,
lfs->free.end, i, &block);
if (err) {
return err;
}
lfs_free(lfs, block);
}
if (lfs->free.off != lfs->free.d.off || lfs->free.end != lfs->free.d.end) {
// TODO handle overflow?
lfs->free.d.rev += 1;
}
lfs->free.d.off = lfs->free.off;
lfs->free.d.end = lfs->free.end;
return 0;
}
lfs_error_t lfs_check(lfs_t *lfs, lfs_ino_t block) {
uint32_t crc = 0xffffffff;
for (lfs_size_t i = 0; i < lfs->info.erase_size; i += 4) {
uint32_t data;
int err = lfs->ops->read(lfs->bd, (void*)&data, block, i, 4);
if (err) {
return err;
}
crc = lfs_crc((void*)&data, 4, crc);
}
return (crc != 0) ? LFS_ERROR_CORRUPT : LFS_ERROR_OK;
}
struct lfs_fetch_region {
lfs_off_t off;
lfs_size_t size;
void *data;
};
lfs_error_t lfs_pair_fetch(lfs_t *lfs, lfs_ino_t pair[2],
int count, const struct lfs_fetch_region *regions) {
int checked = 0;
int rev = 0;
for (int i = 0; i < 2; i++) {
uint32_t nrev;
int err = lfs->ops->read(lfs->bd, (void*)&nrev,
pair[0], 0, 4);
if (err) {
return err;
}
// TODO diff these
if (checked > 0 && lfs_diff(nrev, rev) < 0) {
continue;
}
err = lfs_check(lfs, pair[0]);
if (err == LFS_ERROR_CORRUPT) {
lfs_swap(&pair[0], &pair[1]);
continue;
} else if (err) {
return err;
}
checked += 1;
rev = nrev;
lfs_swap(&pair[0], &pair[1]);
}
if (checked == 0) {
return LFS_ERROR_CORRUPT;
}
for (int i = 0; i < count; i++) {
int err = lfs->ops->read(lfs->bd, regions[i].data,
pair[1], regions[i].off, regions[i].size);
if (err) {
return err;
}
}
return 0;
}
struct lfs_commit_region {
lfs_off_t off;
lfs_size_t size;
const void *data;
};
lfs_error_t lfs_pair_commit(lfs_t *lfs, lfs_ino_t pair[2],
int count, const struct lfs_commit_region *regions) {
uint32_t crc = 0xffffffff;
int err = lfs->ops->erase(lfs->bd,
pair[0], 0, lfs->info.erase_size);
if (err) {
return err;
}
lfs_off_t off = 0;
while (off < lfs->info.erase_size - 4) {
if (count > 0 && regions[0].off == off) {
crc = lfs_crc(regions[0].data, regions[0].size, crc);
int err = lfs->ops->write(lfs->bd, regions[0].data,
pair[0], off, regions[0].size);
if (err) {
return err;
}
off += regions[0].size;
count -= 1;
regions += 1;
} else {
// TODO faster strides?
uint8_t data;
int err = lfs->ops->read(lfs->bd, (void*)&data,
pair[1], off, sizeof(data));
if (err) {
return err;
}
crc = lfs_crc((void*)&data, sizeof(data), crc);
err = lfs->ops->write(lfs->bd, (void*)&data,
pair[0], off, sizeof(data));
if (err) {
return err;
}
off += sizeof(data);
}
}
err = lfs->ops->write(lfs->bd, (void*)&crc,
pair[0], lfs->info.erase_size-4, 4);
if (err) {
return err;
}
lfs_swap(&pair[0], &pair[1]);
return 0;
}
lfs_error_t lfs_dir_make(lfs_t *lfs, lfs_dir_t *dir, lfs_ino_t parent[2]) {
// Allocate pair of dir blocks
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[i]);
if (err) {
return err;
}
}
// Rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs->ops->read(lfs->bd, (void*)&dir->d.rev, dir->pair[1], 0, 4);
if (err) {
return err;
}
dir->d.rev += 1;
// Other defaults
dir->i = sizeof(struct lfs_disk_dir);
dir->d.size = sizeof(struct lfs_disk_dir);
dir->d.tail[0] = 0;
dir->d.tail[1] = 0;
lfs_free_flush(lfs);
dir->d.free = lfs->free.d;
if (parent) {
// Create '..' entry
lfs_entry_t entry = {
.d.type = LFS_TYPE_DIR,
.d.len = sizeof(entry.d) + 2,
.d.u.dir[0] = parent[0],
.d.u.dir[1] = parent[1],
};
dir->d.size += entry.d.len;
// Write out to memory
return lfs_pair_commit(lfs, dir->pair,
3, (struct lfs_commit_region[3]){
{0, sizeof(dir->d), &dir->d},
{sizeof(dir->d), sizeof(entry.d), &entry.d},
{sizeof(dir->d)+sizeof(entry.d), 2, ".."},
});
} else {
return lfs_pair_commit(lfs, dir->pair,
1, (struct lfs_commit_region[1]){
{0, sizeof(dir->d), &dir->d},
});
}
}
lfs_error_t lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, lfs_ino_t pair[2]) {
dir->pair[0] = pair[0];
dir->pair[1] = pair[1];
dir->i = sizeof(dir->d);
int err = lfs_pair_fetch(lfs, dir->pair,
1, (struct lfs_fetch_region[1]) {
{0, sizeof(dir->d), &dir->d}
});
if (err == LFS_ERROR_CORRUPT) {
LFS_ERROR("Corrupted dir at %d %d", pair[0], pair[1]);
}
return err;
}
lfs_error_t lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
while (true) {
// TODO iterate down list
entry->dir[0] = dir->pair[0];
entry->dir[1] = dir->pair[1];
entry->off = dir->i;
if (dir->d.size - dir->i < sizeof(entry->d)) {
return LFS_ERROR_NO_ENTRY;
}
int err = lfs->ops->read(lfs->bd, (void*)&entry->d,
dir->pair[1], dir->i, sizeof(entry->d));
if (err) {
return err;
}
dir->i += entry->d.len;
// Skip any unknown entries
if (entry->d.type == 1 || entry->d.type == 2) {
return 0;
}
}
}
lfs_error_t lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
const char *path, lfs_entry_t *entry) {
// TODO follow directories
lfs_size_t pathlen = strcspn(path, "/");
while (true) {
int err = lfs_dir_next(lfs, dir, entry);
if (err) {
return err;
}
if (entry->d.len - sizeof(entry->d) != pathlen) {
continue;
}
int ret = lfs_bd_cmp(lfs, entry->dir[1],
entry->off + sizeof(entry->d), pathlen, path);
if (ret < 0) {
return ret;
}
// Found match
if (ret == true) {
return 0;
}
}
}
lfs_error_t lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir,
const char *path, lfs_entry_t *entry, uint16_t len) {
int err = lfs_dir_find(lfs, dir, path, entry);
if (err != LFS_ERROR_NO_ENTRY) {
return err ? err : LFS_ERROR_EXISTS;
}
// Check if we fit
if (dir->d.size + len > lfs->info.erase_size - 4) {
return -1; // TODO make fit
}
return 0;
}
lfs_error_t lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
int err = lfs_dir_fetch(lfs, dir, lfs->cwd);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, dir, path, &entry);
if (err) {
return err;
} else if (entry.d.type != LFS_TYPE_DIR) {
return LFS_ERROR_NOT_DIR;
}
return lfs_dir_fetch(lfs, dir, entry.d.u.dir);
}
lfs_error_t lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// Do nothing, dir is always synchronized
return 0;
}
lfs_error_t lfs_mkdir(lfs_t *lfs, const char *path) {
// Allocate entry for directory
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_alloc(lfs, &cwd, path,
&entry, sizeof(entry.d)+strlen(path));
if (err) {
return err;
}
// Build up new directory
lfs_dir_t dir;
err = lfs_dir_make(lfs, &dir, cwd.pair); // TODO correct parent?
if (err) {
return err;
}
entry.d.type = 2;
entry.d.len = sizeof(entry.d) + strlen(path);
entry.d.u.dir[0] = dir.pair[0];
entry.d.u.dir[1] = dir.pair[1];
cwd.d.rev += 1;
cwd.d.size += entry.d.len;
lfs_free_flush(lfs);
cwd.d.free = lfs->free.d;
return lfs_pair_commit(lfs, entry.dir,
3, (struct lfs_commit_region[3]) {
{0, sizeof(cwd.d), &cwd.d},
{entry.off, sizeof(entry.d), &entry.d},
{entry.off+sizeof(entry.d), entry.d.len - sizeof(entry.d), path}
});
}
lfs_error_t lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
// Allocate entry for file if it doesn't exist
// TODO check open files
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
if (err) {
return err;
}
if (flags & LFS_O_CREAT) {
err = lfs_dir_alloc(lfs, &cwd, path,
&file->entry, sizeof(file->entry.d)+strlen(path));
if (err && err != LFS_ERROR_EXISTS) {
return err;
}
} else {
err = lfs_dir_find(lfs, &cwd, path, &file->entry);
if (err) {
return err;
}
}
if ((flags & LFS_O_CREAT) && err != LFS_ERROR_EXISTS) {
// Store file
file->head = 0;
file->size = 0;
file->wblock = 0;
file->windex = 0;
file->rblock = 0;
file->rindex = 0;
file->roff = 0;
file->entry.d.type = 1;
file->entry.d.len = sizeof(file->entry.d) + strlen(path);
file->entry.d.u.file.head = file->head;
file->entry.d.u.file.size = file->size;
cwd.d.rev += 1;
cwd.d.size += file->entry.d.len;
lfs_free_flush(lfs);
cwd.d.free = lfs->free.d;
return lfs_pair_commit(lfs, file->entry.dir,
3, (struct lfs_commit_region[3]) {
{0, sizeof(cwd.d), &cwd.d},
{file->entry.off, sizeof(file->entry.d),
&file->entry.d},
{file->entry.off+sizeof(file->entry.d),
file->entry.d.len-sizeof(file->entry.d), path}
});
} else {
file->head = file->entry.d.u.file.head;
file->size = file->entry.d.u.file.size;
file->windex = lfs_toindex(lfs, file->size);
file->rblock = 0;
file->rindex = 0;
file->roff = 0;
// TODO do this lazily in write?
// TODO cow the head i/d block
if (file->size < lfs->info.erase_size) {
file->wblock = file->head;
} else {
int err = lfs_ifind(lfs, file->head, file->windex,
file->windex, &file->wblock);
if (err) {
return err;
}
}
return 0;
}
}
lfs_error_t lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
// Store file
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, file->entry.dir);
if (err) {
return err;
}
file->entry.d.u.file.head = file->head;
file->entry.d.u.file.size = file->size;
cwd.d.rev += 1;
lfs_free_flush(lfs);
cwd.d.free = lfs->free.d;
return lfs_pair_commit(lfs, file->entry.dir,
3, (struct lfs_commit_region[3]) {
{0, sizeof(cwd.d), &cwd.d},
{file->entry.off, sizeof(file->entry.d), &file->entry.d},
});
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
while (nsize > 0) {
lfs_off_t woff = file->size % lfs->info.erase_size;
if (file->size == 0) {
int err = lfs_alloc(lfs, &file->wblock);
if (err) {
return err;
}
file->head = file->wblock;
file->windex = 0;
} else if (woff == 0) {
// TODO check that 2 blocks are available
// TODO check for available blocks for backing up scratch files?
int err = lfs_alloc(lfs, &file->wblock);
if (err) {
return err;
}
err = lfs_iappend(lfs, &file->head, &file->windex, file->wblock);
if (err) {
return err;
}
}
lfs_size_t diff = lfs_min(nsize, lfs->info.erase_size - woff);
int err = lfs->ops->write(lfs->bd, data, file->wblock, woff, diff);
if (err) {
return err;
}
file->size += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
while (nsize > 0 && file->roff < file->size) {
lfs_off_t roff = file->roff % lfs->info.erase_size;
// TODO cache index blocks
if (file->size < lfs->info.erase_size) {
file->rblock = file->head;
} else if (roff == 0) {
int err = lfs_ifind(lfs, file->head, file->windex,
file->rindex, &file->rblock);
if (err) {
return err;
}
file->rindex = lfs_inext(lfs, file->rindex);
}
lfs_size_t diff = lfs_min(
lfs_min(nsize, file->size-file->roff),
lfs->info.erase_size - roff);
int err = lfs->ops->read(lfs->bd, data, file->rblock, roff, diff);
if (err) {
return err;
}
file->roff += diff;
data += diff;
nsize -= diff;
}
return size - nsize;
}
// Little filesystem operations
lfs_error_t lfs_create(lfs_t *lfs, lfs_bd_t *bd, const struct lfs_bd_ops *ops) {
lfs->bd = bd;
lfs->ops = ops;
lfs_error_t err = lfs->ops->info(lfs->bd, &lfs->info);
if (err) {
return err;
}
return 0;
}
lfs_error_t lfs_format(lfs_t *lfs) {
struct lfs_bd_info info;
lfs_error_t err = lfs->ops->info(lfs->bd, &info);
if (err) {
return err;
}
err = lfs->ops->erase(lfs->bd, 0, 0, 3*info.erase_size);
if (err) {
return err;
}
// TODO make sure that erase clobbered blocks
{ // Create free list
lfs->free = (lfs_free_t){
.begin = 1,
.off = 1,
.end = 1,
.d.rev = 1,
.d.head = 2,
.d.off = 1,
.d.end = 1,
};
lfs_size_t block_count = lfs->info.total_size / lfs->info.erase_size;
for (lfs_ino_t i = 3; i < block_count; i++) {
lfs_error_t err = lfs_free(lfs, i);
if (err) {
return err;
}
}
}
{
// Write root directory
lfs_dir_t root;
int err = lfs_dir_make(lfs, &root, 0);
if (err) {
return err;
}
lfs->cwd[0] = root.pair[0];
lfs->cwd[1] = root.pair[1];
}
{
// Write superblocks
lfs_superblock_t superblock = {
.pair = {0, 1},
.d.rev = 1,
.d.size = sizeof(struct lfs_disk_superblock),
.d.root = {lfs->cwd[0], lfs->cwd[1]},
.d.magic = {"littlefs"},
.d.block_size = info.erase_size,
.d.block_count = info.total_size / info.erase_size,
};
for (int i = 0; i < 2; i++) {
lfs_ino_t block = superblock.pair[0];
int err = lfs_pair_commit(lfs, superblock.pair,
1, (struct lfs_commit_region[1]){
{0, sizeof(superblock.d), &superblock.d}
});
err = lfs_check(lfs, block);
if (err) {
LFS_ERROR("Failed to write superblock at %d", block);
return err;
}
}
}
return 0;
}
lfs_error_t lfs_mount(lfs_t *lfs) {
struct lfs_bd_info info;
lfs_error_t err = lfs->ops->info(lfs->bd, &info);
if (err) {
return err;
}
lfs_superblock_t superblock;
err = lfs_pair_fetch(lfs,
(lfs_ino_t[2]){0, 1},
1, (struct lfs_fetch_region[1]){
{0, sizeof(superblock.d), &superblock.d}
});
if ((err == LFS_ERROR_CORRUPT ||
memcmp(superblock.d.magic, "littlefs", 8) != 0)) {
LFS_ERROR("Invalid superblock at %d %d\n", 0, 1);
return LFS_ERROR_CORRUPT;
}
printf("superblock %d %d\n",
superblock.d.block_size,
superblock.d.block_count);
lfs->cwd[0] = superblock.d.root[0];
lfs->cwd[1] = superblock.d.root[1];
return err;
}