ESPAsyncWebServer/src/AsyncWebSocket.cpp

1312 lines
33 KiB
C++

/*
Asynchronous WebServer library for Espressif MCUs
Copyright (c) 2016 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "AsyncWebSocket.h"
#include <cstring>
#include <libb64/cencode.h>
#ifndef ESP8266
#include "mbedtls/sha1.h"
#else
#include <Hash.h>
#endif
#define MAX_PRINTF_LEN 64
size_t webSocketSendFrameWindow(AsyncClient *client){
if(!client->canSend())
return 0;
size_t space = client->space();
if(space < 9)
return 0;
return space - 8;
}
size_t webSocketSendFrame(AsyncClient *client, bool final, uint8_t opcode, bool mask, uint8_t *data, size_t len){
if(!client->canSend()) {
// Serial.println("SF 1");
return 0;
}
size_t space = client->space();
if(space < 2) {
// Serial.println("SF 2");
return 0;
}
uint8_t mbuf[4] = {0,0,0,0};
uint8_t headLen = 2;
if(len && mask){
headLen += 4;
mbuf[0] = rand() % 0xFF;
mbuf[1] = rand() % 0xFF;
mbuf[2] = rand() % 0xFF;
mbuf[3] = rand() % 0xFF;
}
if(len > 125)
headLen += 2;
if(space < headLen) {
// Serial.println("SF 2");
return 0;
}
space -= headLen;
if(len > space) len = space;
uint8_t *buf = (uint8_t*)malloc(headLen);
if(buf == NULL){
//os_printf("could not malloc %u bytes for frame header\n", headLen);
// Serial.println("SF 3");
return 0;
}
buf[0] = opcode & 0x0F;
if(final)
buf[0] |= 0x80;
if(len < 126)
buf[1] = len & 0x7F;
else {
buf[1] = 126;
buf[2] = (uint8_t)((len >> 8) & 0xFF);
buf[3] = (uint8_t)(len & 0xFF);
}
if(len && mask){
buf[1] |= 0x80;
memcpy(buf + (headLen - 4), mbuf, 4);
}
if(client->add((const char *)buf, headLen) != headLen){
//os_printf("error adding %lu header bytes\n", headLen);
free(buf);
// Serial.println("SF 4");
return 0;
}
free(buf);
if(len){
if(len && mask){
size_t i;
for(i=0;i<len;i++)
data[i] = data[i] ^ mbuf[i%4];
}
if(client->add((const char *)data, len) != len){
//os_printf("error adding %lu data bytes\n", len);
// Serial.println("SF 5");
return 0;
}
}
if(!client->send()){
//os_printf("error sending frame: %lu\n", headLen+len);
// Serial.println("SF 6");
return 0;
}
// Serial.println("SF");
return len;
}
/*
* AsyncWebSocketMessageBuffer
*/
AsyncWebSocketMessageBuffer::AsyncWebSocketMessageBuffer()
: _buffer(std::make_shared<std::vector<uint8_t>>(0))
{
}
AsyncWebSocketMessageBuffer::AsyncWebSocketMessageBuffer(uint8_t* data, size_t size)
: _buffer(std::make_shared<std::vector<uint8_t>>(size))
{
if (_buffer->capacity() < size) {
_buffer.reset();
_buffer = std::make_shared<std::vector<uint8_t>>(0);
} else {
std::memcpy(_buffer->data(), data, size);
}
}
AsyncWebSocketMessageBuffer::AsyncWebSocketMessageBuffer(size_t size)
: _buffer(std::make_shared<std::vector<uint8_t>>(size))
{
if (_buffer->capacity() < size) {
_buffer.reset();
_buffer = std::make_shared<std::vector<uint8_t>>(0);
}
}
AsyncWebSocketMessageBuffer::~AsyncWebSocketMessageBuffer()
{
_buffer.reset();
}
bool AsyncWebSocketMessageBuffer::reserve(size_t size)
{
if (_buffer->capacity() >= size)
return true;
_buffer->reserve(size);
return _buffer->capacity() >= size;
}
/*
* Control Frame
*/
class AsyncWebSocketControl {
private:
uint8_t _opcode;
uint8_t *_data;
size_t _len;
bool _mask;
bool _finished;
public:
AsyncWebSocketControl(uint8_t opcode, const uint8_t *data=NULL, size_t len=0, bool mask=false)
:_opcode(opcode)
,_len(len)
,_mask(len && mask)
,_finished(false)
{
if (data == NULL)
_len = 0;
if (_len)
{
if (_len > 125)
_len = 125;
_data = (uint8_t*)malloc(_len);
if(_data == NULL)
_len = 0;
else
memcpy(_data, data, len);
}
else
_data = NULL;
}
virtual ~AsyncWebSocketControl()
{
if (_data != NULL)
free(_data);
}
virtual bool finished() const { return _finished; }
uint8_t opcode(){ return _opcode; }
uint8_t len(){ return _len + 2; }
size_t send(AsyncClient *client){
_finished = true;
return webSocketSendFrame(client, true, _opcode & 0x0F, _mask, _data, _len);
}
};
/*
* AsyncWebSocketMessage Message
*/
AsyncWebSocketMessage::AsyncWebSocketMessage(std::shared_ptr<std::vector<uint8_t>> buffer, uint8_t opcode, bool mask) :
_WSbuffer{buffer},
_opcode(opcode & 0x07),
_mask{mask},
_status{_WSbuffer?WS_MSG_SENDING:WS_MSG_ERROR}
{
}
void AsyncWebSocketMessage::ack(size_t len, uint32_t time)
{
(void)time;
_acked += len;
if (_sent >= _WSbuffer->size() && _acked >= _ack)
{
_status = WS_MSG_SENT;
}
//ets_printf("A: %u\n", len);
}
size_t AsyncWebSocketMessage::send(AsyncClient *client)
{
if (_status != WS_MSG_SENDING)
return 0;
if (_acked < _ack){
return 0;
}
if (_sent == _WSbuffer->size())
{
if(_acked == _ack)
_status = WS_MSG_SENT;
return 0;
}
if (_sent > _WSbuffer->size())
{
_status = WS_MSG_ERROR;
//ets_printf("E: %u > %u\n", _sent, _WSbuffer->length());
return 0;
}
size_t toSend = _WSbuffer->size() - _sent;
size_t window = webSocketSendFrameWindow(client);
if (window < toSend) {
toSend = window;
}
_sent += toSend;
_ack += toSend + ((toSend < 126)?2:4) + (_mask * 4);
//ets_printf("W: %u %u\n", _sent - toSend, toSend);
bool final = (_sent == _WSbuffer->size());
uint8_t* dPtr = (uint8_t*)(_WSbuffer->data() + (_sent - toSend));
uint8_t opCode = (toSend && _sent == toSend)?_opcode:(uint8_t)WS_CONTINUATION;
size_t sent = webSocketSendFrame(client, final, opCode, _mask, dPtr, toSend);
_status = WS_MSG_SENDING;
if (toSend && sent != toSend){
//ets_printf("E: %u != %u\n", toSend, sent);
_sent -= (toSend - sent);
_ack -= (toSend - sent);
}
//ets_printf("S: %u %u\n", _sent, sent);
return sent;
}
/*
* Async WebSocket Client
*/
const char * AWSC_PING_PAYLOAD = "ESPAsyncWebServer-PING";
const size_t AWSC_PING_PAYLOAD_LEN = 22;
AsyncWebSocketClient::AsyncWebSocketClient(AsyncWebServerRequest *request, AsyncWebSocket *server)
: _tempObject(NULL)
{
_client = request->client();
_server = server;
_clientId = _server->_getNextId();
_status = WS_CONNECTED;
_pstate = 0;
_lastMessageTime = millis();
_keepAlivePeriod = 0;
_client->setRxTimeout(0);
_client->onError([](void *r, AsyncClient* c, int8_t error){ (void)c; ((AsyncWebSocketClient*)(r))->_onError(error); }, this);
_client->onAck([](void *r, AsyncClient* c, size_t len, uint32_t time){ (void)c; ((AsyncWebSocketClient*)(r))->_onAck(len, time); }, this);
_client->onDisconnect([](void *r, AsyncClient* c){ ((AsyncWebSocketClient*)(r))->_onDisconnect(); delete c; }, this);
_client->onTimeout([](void *r, AsyncClient* c, uint32_t time){ (void)c; ((AsyncWebSocketClient*)(r))->_onTimeout(time); }, this);
_client->onData([](void *r, AsyncClient* c, void *buf, size_t len){ (void)c; ((AsyncWebSocketClient*)(r))->_onData(buf, len); }, this);
_client->onPoll([](void *r, AsyncClient* c){ (void)c; ((AsyncWebSocketClient*)(r))->_onPoll(); }, this);
_server->_handleEvent(this, WS_EVT_CONNECT, request, NULL, 0);
delete request;
memset(&_pinfo,0,sizeof(_pinfo));
}
AsyncWebSocketClient::~AsyncWebSocketClient()
{
{
AsyncWebLockGuard l(_lock);
_messageQueue.clear();
_controlQueue.clear();
}
_server->_handleEvent(this, WS_EVT_DISCONNECT, NULL, NULL, 0);
}
void AsyncWebSocketClient::_clearQueue()
{
while (!_messageQueue.empty() && _messageQueue.front().finished())
_messageQueue.pop_front();
}
void AsyncWebSocketClient::_onAck(size_t len, uint32_t time){
_lastMessageTime = millis();
AsyncWebLockGuard l(_lock);
if (!_controlQueue.empty()) {
auto &head = _controlQueue.front();
if (head.finished()){
len -= head.len();
if (_status == WS_DISCONNECTING && head.opcode() == WS_DISCONNECT){
_controlQueue.pop_front();
_status = WS_DISCONNECTED;
l.unlock();
if (_client) _client->close(true);
return;
}
_controlQueue.pop_front();
}
}
if(len && !_messageQueue.empty()){
_messageQueue.front().ack(len, time);
}
_clearQueue();
_runQueue();
}
void AsyncWebSocketClient::_onPoll()
{
if (!_client)
return;
AsyncWebLockGuard l(_lock);
if (_client->canSend() && (!_controlQueue.empty() || !_messageQueue.empty()))
{
l.unlock();
_runQueue();
}
else if (_keepAlivePeriod > 0 && (millis() - _lastMessageTime) >= _keepAlivePeriod && (_controlQueue.empty() && _messageQueue.empty()))
{
l.unlock();
ping((uint8_t *)AWSC_PING_PAYLOAD, AWSC_PING_PAYLOAD_LEN);
}
}
void AsyncWebSocketClient::_runQueue()
{
if (!_client)
return;
AsyncWebLockGuard l(_lock);
_clearQueue();
if (!_controlQueue.empty() && (_messageQueue.empty() || _messageQueue.front().betweenFrames()) && webSocketSendFrameWindow(_client) > (size_t)(_controlQueue.front().len() - 1))
{
//l.unlock();
_controlQueue.front().send(_client);
}
else if (!_messageQueue.empty() && _messageQueue.front().betweenFrames() && webSocketSendFrameWindow(_client))
{
//l.unlock();
_messageQueue.front().send(_client);
}
}
bool AsyncWebSocketClient::queueIsFull() const
{
size_t size;
{
AsyncWebLockGuard l(_lock);
size = _messageQueue.size();
}
return (size >= WS_MAX_QUEUED_MESSAGES) || (_status != WS_CONNECTED);
}
size_t AsyncWebSocketClient::queueLen() const
{
AsyncWebLockGuard l(_lock);
return _messageQueue.size() + _controlQueue.size();
}
bool AsyncWebSocketClient::canSend() const
{
size_t size;
{
AsyncWebLockGuard l(_lock);
size = _messageQueue.size();
}
return size < WS_MAX_QUEUED_MESSAGES;
}
void AsyncWebSocketClient::_queueControl(uint8_t opcode, const uint8_t *data, size_t len, bool mask)
{
if (!_client)
return;
{
AsyncWebLockGuard l(_lock);
_controlQueue.emplace_back(opcode, data, len, mask);
}
if (_client && _client->canSend())
_runQueue();
}
void AsyncWebSocketClient::_queueMessage(std::shared_ptr<std::vector<uint8_t>> buffer, uint8_t opcode, bool mask)
{
if(_status != WS_CONNECTED)
return;
if (!_client)
return;
if (buffer->size() == 0)
return;
{
AsyncWebLockGuard l(_lock);
if (_messageQueue.size() >= WS_MAX_QUEUED_MESSAGES)
{
l.unlock();
ets_printf("AsyncWebSocketClient::_queueMessage: Too many messages queued, closing connection\n");
_status = WS_DISCONNECTED;
if (_client) _client->close(true);
return;
}
else
{
_messageQueue.emplace_back(buffer, opcode, mask);
}
}
if (_client && _client->canSend())
_runQueue();
}
void AsyncWebSocketClient::close(uint16_t code, const char * message)
{
if(_status != WS_CONNECTED)
return;
if(code)
{
uint8_t packetLen = 2;
if (message != NULL)
{
size_t mlen = strlen(message);
if(mlen > 123) mlen = 123;
packetLen += mlen;
}
char * buf = (char*)malloc(packetLen);
if (buf != NULL)
{
buf[0] = (uint8_t)(code >> 8);
buf[1] = (uint8_t)(code & 0xFF);
if(message != NULL){
memcpy(buf+2, message, packetLen -2);
}
_queueControl(WS_DISCONNECT, (uint8_t*)buf, packetLen);
free(buf);
return;
}
}
_queueControl(WS_DISCONNECT);
}
void AsyncWebSocketClient::ping(const uint8_t *data, size_t len)
{
if (_status == WS_CONNECTED)
_queueControl(WS_PING, data, len);
}
void AsyncWebSocketClient::_onError(int8_t)
{
//Serial.println("onErr");
}
void AsyncWebSocketClient::_onTimeout(uint32_t time)
{
// Serial.println("onTime");
(void)time;
_client->close(true);
}
void AsyncWebSocketClient::_onDisconnect()
{
// Serial.println("onDis");
_client = NULL;
}
void AsyncWebSocketClient::_onData(void *pbuf, size_t plen)
{
// Serial.println("onData");
_lastMessageTime = millis();
uint8_t *data = (uint8_t*)pbuf;
while(plen > 0){
if(!_pstate){
const uint8_t *fdata = data;
_pinfo.index = 0;
_pinfo.final = (fdata[0] & 0x80) != 0;
_pinfo.opcode = fdata[0] & 0x0F;
_pinfo.masked = (fdata[1] & 0x80) != 0;
_pinfo.len = fdata[1] & 0x7F;
data += 2;
plen -= 2;
if(_pinfo.len == 126){
_pinfo.len = fdata[3] | (uint16_t)(fdata[2]) << 8;
data += 2;
plen -= 2;
} else if(_pinfo.len == 127){
_pinfo.len = fdata[9] | (uint16_t)(fdata[8]) << 8 | (uint32_t)(fdata[7]) << 16 | (uint32_t)(fdata[6]) << 24 | (uint64_t)(fdata[5]) << 32 | (uint64_t)(fdata[4]) << 40 | (uint64_t)(fdata[3]) << 48 | (uint64_t)(fdata[2]) << 56;
data += 8;
plen -= 8;
}
if(_pinfo.masked){
memcpy(_pinfo.mask, data, 4);
data += 4;
plen -= 4;
}
}
const size_t datalen = std::min((size_t)(_pinfo.len - _pinfo.index), plen);
const auto datalast = data[datalen];
if(_pinfo.masked){
for(size_t i=0;i<datalen;i++)
data[i] ^= _pinfo.mask[(_pinfo.index+i)%4];
}
if((datalen + _pinfo.index) < _pinfo.len){
_pstate = 1;
if(_pinfo.index == 0){
if(_pinfo.opcode){
_pinfo.message_opcode = _pinfo.opcode;
_pinfo.num = 0;
}
}
if (datalen > 0) _server->_handleEvent(this, WS_EVT_DATA, (void *)&_pinfo, (uint8_t*)data, datalen);
_pinfo.index += datalen;
} else if((datalen + _pinfo.index) == _pinfo.len){
_pstate = 0;
if(_pinfo.opcode == WS_DISCONNECT){
if(datalen){
uint16_t reasonCode = (uint16_t)(data[0] << 8) + data[1];
char * reasonString = (char*)(data+2);
if(reasonCode > 1001){
_server->_handleEvent(this, WS_EVT_ERROR, (void *)&reasonCode, (uint8_t*)reasonString, strlen(reasonString));
}
}
if(_status == WS_DISCONNECTING){
_status = WS_DISCONNECTED;
_client->close(true);
} else {
_status = WS_DISCONNECTING;
_client->ackLater();
_queueControl(WS_DISCONNECT, data, datalen);
}
} else if(_pinfo.opcode == WS_PING){
_queueControl(WS_PONG, data, datalen);
} else if(_pinfo.opcode == WS_PONG){
if(datalen != AWSC_PING_PAYLOAD_LEN || memcmp(AWSC_PING_PAYLOAD, data, AWSC_PING_PAYLOAD_LEN) != 0)
_server->_handleEvent(this, WS_EVT_PONG, NULL, data, datalen);
} else if(_pinfo.opcode < 8){//continuation or text/binary frame
_server->_handleEvent(this, WS_EVT_DATA, (void *)&_pinfo, data, datalen);
if (_pinfo.final) _pinfo.num = 0;
else _pinfo.num += 1;
}
} else {
//os_printf("frame error: len: %u, index: %llu, total: %llu\n", datalen, _pinfo.index, _pinfo.len);
//what should we do?
break;
}
// restore byte as _handleEvent may have added a null terminator i.e., data[len] = 0;
if (datalen > 0)
data[datalen] = datalast;
data += datalen;
plen -= datalen;
}
}
size_t AsyncWebSocketClient::printf(const char *format, ...)
{
va_list arg;
va_start(arg, format);
char* temp = new char[MAX_PRINTF_LEN];
if(!temp){
va_end(arg);
return 0;
}
char* buffer = temp;
size_t len = vsnprintf(temp, MAX_PRINTF_LEN, format, arg);
va_end(arg);
if (len > (MAX_PRINTF_LEN - 1)) {
buffer = new char[len + 1];
if (!buffer) {
delete[] temp;
return 0;
}
va_start(arg, format);
vsnprintf(buffer, len + 1, format, arg);
va_end(arg);
}
text(buffer, len);
if (buffer != temp) {
delete[] buffer;
}
delete[] temp;
return len;
}
#ifndef ESP32
size_t AsyncWebSocketClient::printf_P(PGM_P formatP, ...)
{
va_list arg;
va_start(arg, formatP);
char* temp = new char[MAX_PRINTF_LEN];
if(!temp){
va_end(arg);
return 0;
}
char* buffer = temp;
size_t len = vsnprintf_P(temp, MAX_PRINTF_LEN, formatP, arg);
va_end(arg);
if (len > (MAX_PRINTF_LEN - 1)) {
buffer = new char[len + 1];
if (!buffer) {
delete[] temp;
return 0;
}
va_start(arg, formatP);
vsnprintf_P(buffer, len + 1, formatP, arg);
va_end(arg);
}
text(buffer, len);
if (buffer != temp) {
delete[] buffer;
}
delete[] temp;
return len;
}
#endif
namespace {
std::shared_ptr<std::vector<uint8_t>> makeSharedBuffer(const uint8_t *message, size_t len)
{
auto buffer = std::make_shared<std::vector<uint8_t>>(len);
std::memcpy(buffer->data(), message, len);
return buffer;
}
}
void AsyncWebSocketClient::text(AsyncWebSocketMessageBuffer * buffer)
{
if (buffer) {
text(std::move(buffer->_buffer));
delete buffer;
}
}
void AsyncWebSocketClient::text(std::shared_ptr<std::vector<uint8_t>> buffer)
{
_queueMessage(buffer);
}
void AsyncWebSocketClient::text(const uint8_t *message, size_t len)
{
text(makeSharedBuffer(message, len));
}
void AsyncWebSocketClient::text(const char *message, size_t len)
{
text((const uint8_t *)message, len);
}
void AsyncWebSocketClient::text(const char *message)
{
text(message, strlen(message));
}
void AsyncWebSocketClient::text(const String &message)
{
text(message.c_str(), message.length());
}
void AsyncWebSocketClient::text(const __FlashStringHelper *data)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
size_t n = 0;
while (1)
{
if (pgm_read_byte(p+n) == 0) break;
n += 1;
}
char * message = (char*) malloc(n+1);
if(message)
{
memcpy_P(message, p, n);
message[n] = 0;
text(message, n);
free(message);
}
}
void AsyncWebSocketClient::binary(AsyncWebSocketMessageBuffer * buffer)
{
if (buffer) {
binary(std::move(buffer->_buffer));
delete buffer;
}
}
void AsyncWebSocketClient::binary(std::shared_ptr<std::vector<uint8_t>> buffer)
{
_queueMessage(buffer, WS_BINARY);
}
void AsyncWebSocketClient::binary(const uint8_t *message, size_t len)
{
binary(makeSharedBuffer(message, len));
}
void AsyncWebSocketClient::binary(const char *message, size_t len)
{
binary((const uint8_t *)message, len);
}
void AsyncWebSocketClient::binary(const char *message)
{
binary(message, strlen(message));
}
void AsyncWebSocketClient::binary(const String &message)
{
binary(message.c_str(), message.length());
}
void AsyncWebSocketClient::binary(const __FlashStringHelper *data, size_t len)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
char *message = (char*) malloc(len);
if (message) {
memcpy_P(message, p, len);
binary(message, len);
free(message);
}
}
IPAddress AsyncWebSocketClient::remoteIP() const
{
if (!_client)
return IPAddress(0UL);
return _client->remoteIP();
}
uint16_t AsyncWebSocketClient::remotePort() const
{
if(!_client)
return 0;
return _client->remotePort();
}
/*
* Async Web Socket - Each separate socket location
*/
AsyncWebSocket::AsyncWebSocket(const String& url)
:_url(url)
,_cNextId(1)
,_enabled(true)
{
_eventHandler = NULL;
}
AsyncWebSocket::~AsyncWebSocket(){}
void AsyncWebSocket::_handleEvent(AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t *data, size_t len){
if(_eventHandler != NULL){
_eventHandler(this, client, type, arg, data, len);
}
}
AsyncWebSocketClient *AsyncWebSocket::_newClient(AsyncWebServerRequest *request)
{
_clients.emplace_back(request, this);
return &_clients.back();
}
bool AsyncWebSocket::availableForWriteAll()
{
return std::none_of(std::begin(_clients), std::end(_clients),
[](const AsyncWebSocketClient &c){ return c.queueIsFull(); });
}
bool AsyncWebSocket::availableForWrite(uint32_t id)
{
const auto iter = std::find_if(std::begin(_clients), std::end(_clients),
[id](const AsyncWebSocketClient &c){ return c.id() == id; });
if (iter == std::end(_clients))
return true;
return !iter->queueIsFull();
}
size_t AsyncWebSocket::count() const
{
return std::count_if(std::begin(_clients), std::end(_clients),
[](const AsyncWebSocketClient &c){ return c.status() == WS_CONNECTED; });
}
AsyncWebSocketClient * AsyncWebSocket::client(uint32_t id)
{
const auto iter = std::find_if(std::begin(_clients), std::end(_clients),
[id](const AsyncWebSocketClient &c){ return c.id() == id && c.status() == WS_CONNECTED; });
if (iter == std::end(_clients))
return nullptr;
return &(*iter);
}
void AsyncWebSocket::close(uint32_t id, uint16_t code, const char * message)
{
if (AsyncWebSocketClient *c = client(id))
c->close(code, message);
}
void AsyncWebSocket::closeAll(uint16_t code, const char * message)
{
for (auto &c : _clients)
if (c.status() == WS_CONNECTED)
c.close(code, message);
}
void AsyncWebSocket::cleanupClients(uint16_t maxClients)
{
if (count() > maxClients)
_clients.front().close();
for (auto iter = std::begin(_clients); iter != std::end(_clients);)
{
if (iter->shouldBeDeleted())
iter = _clients.erase(iter);
else
iter++;
}
}
void AsyncWebSocket::ping(uint32_t id, const uint8_t *data, size_t len)
{
if (AsyncWebSocketClient * c = client(id))
c->ping(data, len);
}
void AsyncWebSocket::pingAll(const uint8_t *data, size_t len)
{
for (auto &c : _clients)
if (c.status() == WS_CONNECTED)
c.ping(data, len);
}
void AsyncWebSocket::text(uint32_t id, const uint8_t *message, size_t len)
{
if (AsyncWebSocketClient * c = client(id))
c->text(makeSharedBuffer(message, len));
}
void AsyncWebSocket::text(uint32_t id, const char *message, size_t len)
{
text(id, (const uint8_t *)message, len);
}
void AsyncWebSocket::text(uint32_t id, const char * message)
{
text(id, message, strlen(message));
}
void AsyncWebSocket::text(uint32_t id, const String &message)
{
text(id, message.c_str(), message.length());
}
void AsyncWebSocket::text(uint32_t id, const __FlashStringHelper *data)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
size_t n = 0;
while (true)
{
if (pgm_read_byte(p+n) == 0)
break;
n += 1;
}
char * message = (char*) malloc(n+1);
if (message)
{
memcpy_P(message, p, n);
message[n] = 0;
text(id, message, n);
free(message);
}
}
void AsyncWebSocket::textAll(AsyncWebSocketMessageBuffer * buffer)
{
if (buffer) {
textAll(std::move(buffer->_buffer));
delete buffer;
}
}
void AsyncWebSocket::textAll(std::shared_ptr<std::vector<uint8_t>> buffer)
{
for (auto &c : _clients)
if (c.status() == WS_CONNECTED)
c.text(buffer);
}
void AsyncWebSocket::textAll(const uint8_t *message, size_t len)
{
textAll(makeSharedBuffer(message, len));
}
void AsyncWebSocket::textAll(const char * message, size_t len)
{
textAll((const uint8_t *)message, len);
}
void AsyncWebSocket::textAll(const char *message)
{
textAll(message, strlen(message));
}
void AsyncWebSocket::textAll(const String &message)
{
textAll(message.c_str(), message.length());
}
void AsyncWebSocket::textAll(const __FlashStringHelper *data)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
size_t n = 0;
while (1)
{
if (pgm_read_byte(p+n) == 0) break;
n += 1;
}
char *message = (char*)malloc(n+1);
if(message)
{
memcpy_P(message, p, n);
message[n] = 0;
textAll(message, n);
free(message);
}
}
void AsyncWebSocket::binary(uint32_t id, const uint8_t *message, size_t len)
{
if (AsyncWebSocketClient *c = client(id))
c->binary(makeSharedBuffer(message, len));
}
void AsyncWebSocket::binary(uint32_t id, const char * message, size_t len)
{
binary(id, (const uint8_t *)message, len);
}
void AsyncWebSocket::binary(uint32_t id, const char * message)
{
binary(id, message, strlen(message));
}
void AsyncWebSocket::binary(uint32_t id, const String &message)
{
binary(id, message.c_str(), message.length());
}
void AsyncWebSocket::binary(uint32_t id, const __FlashStringHelper *data, size_t len)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
char *message = (char*) malloc(len);
if (message)
{
memcpy_P(message, p, len);
binary(id, message, len);
free(message);
}
}
void AsyncWebSocket::binaryAll(AsyncWebSocketMessageBuffer * buffer)
{
if (buffer) {
binaryAll(std::move(buffer->_buffer));
delete buffer;
}
}
void AsyncWebSocket::binaryAll(std::shared_ptr<std::vector<uint8_t>> buffer)
{
for (auto &c : _clients)
if (c.status() == WS_CONNECTED)
c.binary(buffer);
}
void AsyncWebSocket::binaryAll(const uint8_t *message, size_t len)
{
binaryAll(makeSharedBuffer(message, len));
}
void AsyncWebSocket::binaryAll(const char *message, size_t len)
{
binaryAll((const uint8_t *)message, len);
}
void AsyncWebSocket::binaryAll(const char *message)
{
binaryAll(message, strlen(message));
}
void AsyncWebSocket::binaryAll(const String &message)
{
binaryAll(message.c_str(), message.length());
}
void AsyncWebSocket::binaryAll(const __FlashStringHelper *data, size_t len)
{
PGM_P p = reinterpret_cast<PGM_P>(data);
char * message = (char*) malloc(len);
if(message)
{
memcpy_P(message, p, len);
binaryAll(message, len);
free(message);
}
}
size_t AsyncWebSocket::printf(uint32_t id, const char *format, ...){
AsyncWebSocketClient * c = client(id);
if (c)
{
va_list arg;
va_start(arg, format);
size_t len = c->printf(format, arg);
va_end(arg);
return len;
}
return 0;
}
size_t AsyncWebSocket::printfAll(const char *format, ...)
{
va_list arg;
char *temp = new char[MAX_PRINTF_LEN];
if (!temp)
return 0;
va_start(arg, format);
size_t len = vsnprintf(temp, MAX_PRINTF_LEN, format, arg);
va_end(arg);
delete[] temp;
std::shared_ptr<std::vector<uint8_t>> buffer = std::make_shared<std::vector<uint8_t>>(len);
va_start(arg, format);
vsnprintf( (char *)buffer->data(), len + 1, format, arg);
va_end(arg);
textAll(buffer);
return len;
}
#ifndef ESP32
size_t AsyncWebSocket::printf_P(uint32_t id, PGM_P formatP, ...){
AsyncWebSocketClient * c = client(id);
if(c != NULL){
va_list arg;
va_start(arg, formatP);
size_t len = c->printf_P(formatP, arg);
va_end(arg);
return len;
}
return 0;
}
#endif
size_t AsyncWebSocket::printfAll_P(PGM_P formatP, ...)
{
va_list arg;
char *temp = new char[MAX_PRINTF_LEN];
if (!temp)
return 0;
va_start(arg, formatP);
size_t len = vsnprintf_P(temp, MAX_PRINTF_LEN, formatP, arg);
va_end(arg);
delete[] temp;
std::shared_ptr<std::vector<uint8_t>> buffer = std::make_shared<std::vector<uint8_t>>(len + 1);
va_start(arg, formatP);
vsnprintf_P((char *)buffer->data(), len + 1, formatP, arg);
va_end(arg);
textAll(buffer);
return len;
}
const char __WS_STR_CONNECTION[] PROGMEM = { "Connection" };
const char __WS_STR_UPGRADE[] PROGMEM = { "Upgrade" };
const char __WS_STR_ORIGIN[] PROGMEM = { "Origin" };
const char __WS_STR_COOKIE[] PROGMEM = { "Cookie" };
const char __WS_STR_VERSION[] PROGMEM = { "Sec-WebSocket-Version" };
const char __WS_STR_KEY[] PROGMEM = { "Sec-WebSocket-Key" };
const char __WS_STR_PROTOCOL[] PROGMEM = { "Sec-WebSocket-Protocol" };
const char __WS_STR_ACCEPT[] PROGMEM = { "Sec-WebSocket-Accept" };
const char __WS_STR_UUID[] PROGMEM = { "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" };
#define WS_STR_CONNECTION FPSTR(__WS_STR_CONNECTION)
#define WS_STR_UPGRADE FPSTR(__WS_STR_UPGRADE)
#define WS_STR_ORIGIN FPSTR(__WS_STR_ORIGIN)
#define WS_STR_COOKIE FPSTR(__WS_STR_COOKIE)
#define WS_STR_VERSION FPSTR(__WS_STR_VERSION)
#define WS_STR_KEY FPSTR(__WS_STR_KEY)
#define WS_STR_PROTOCOL FPSTR(__WS_STR_PROTOCOL)
#define WS_STR_ACCEPT FPSTR(__WS_STR_ACCEPT)
#define WS_STR_UUID FPSTR(__WS_STR_UUID)
bool AsyncWebSocket::canHandle(AsyncWebServerRequest *request){
if(!_enabled)
return false;
if(request->method() != HTTP_GET || !request->url().equals(_url) || !request->isExpectedRequestedConnType(RCT_WS))
return false;
request->addInterestingHeader(WS_STR_CONNECTION);
request->addInterestingHeader(WS_STR_UPGRADE);
request->addInterestingHeader(WS_STR_ORIGIN);
request->addInterestingHeader(WS_STR_COOKIE);
request->addInterestingHeader(WS_STR_VERSION);
request->addInterestingHeader(WS_STR_KEY);
request->addInterestingHeader(WS_STR_PROTOCOL);
return true;
}
void AsyncWebSocket::handleRequest(AsyncWebServerRequest *request)
{
if (!request->hasHeader(WS_STR_VERSION) || !request->hasHeader(WS_STR_KEY))
{
request->send(400);
return;
}
if ((_username.length() && _password.length()) && !request->authenticate(_username.c_str(), _password.c_str()))
{
return request->requestAuthentication();
}
if (_handshakeHandler != nullptr){
if(!_handshakeHandler(request)){
request->send(401);
return;
}
}
AsyncWebHeader* version = request->getHeader(WS_STR_VERSION);
if (version->value().toInt() != 13)
{
AsyncWebServerResponse *response = request->beginResponse(400);
response->addHeader(WS_STR_VERSION, F("13"));
request->send(response);
return;
}
AsyncWebHeader* key = request->getHeader(WS_STR_KEY);
AsyncWebServerResponse *response = new AsyncWebSocketResponse(key->value(), this);
if (request->hasHeader(WS_STR_PROTOCOL))
{
AsyncWebHeader* protocol = request->getHeader(WS_STR_PROTOCOL);
//ToDo: check protocol
response->addHeader(WS_STR_PROTOCOL, protocol->value());
}
request->send(response);
}
AsyncWebSocketMessageBuffer * AsyncWebSocket::makeBuffer(size_t size)
{
AsyncWebSocketMessageBuffer * buffer = new AsyncWebSocketMessageBuffer(size);
if (buffer->length() != size)
{
delete buffer;
return nullptr;
} else {
return buffer;
}
}
AsyncWebSocketMessageBuffer * AsyncWebSocket::makeBuffer(uint8_t * data, size_t size)
{
AsyncWebSocketMessageBuffer * buffer = new AsyncWebSocketMessageBuffer(data, size);
if (buffer->length() != size)
{
delete buffer;
return nullptr;
} else {
return buffer;
}
}
/*
* Response to Web Socket request - sends the authorization and detaches the TCP Client from the web server
* Authentication code from https://github.com/Links2004/arduinoWebSockets/blob/master/src/WebSockets.cpp#L480
*/
AsyncWebSocketResponse::AsyncWebSocketResponse(const String& key, AsyncWebSocket *server)
{
_server = server;
_code = 101;
_sendContentLength = false;
uint8_t * hash = (uint8_t*)malloc(20);
if(hash == NULL)
{
_state = RESPONSE_FAILED;
return;
}
char * buffer = (char *) malloc(33);
if(buffer == NULL)
{
free(hash);
_state = RESPONSE_FAILED;
return;
}
#ifdef ESP8266
sha1(key + WS_STR_UUID, hash);
#else
(String&)key += WS_STR_UUID;
mbedtls_sha1_context ctx;
mbedtls_sha1_init(&ctx);
mbedtls_sha1_starts_ret(&ctx);
mbedtls_sha1_update_ret(&ctx, (const unsigned char*)key.c_str(), key.length());
mbedtls_sha1_finish_ret(&ctx, hash);
mbedtls_sha1_free(&ctx);
#endif
base64_encodestate _state;
base64_init_encodestate(&_state);
int len = base64_encode_block((const char *) hash, 20, buffer, &_state);
len = base64_encode_blockend((buffer + len), &_state);
addHeader(WS_STR_CONNECTION, WS_STR_UPGRADE);
addHeader(WS_STR_UPGRADE, F("websocket"));
addHeader(WS_STR_ACCEPT,buffer);
free(buffer);
free(hash);
}
void AsyncWebSocketResponse::_respond(AsyncWebServerRequest *request)
{
if(_state == RESPONSE_FAILED)
{
request->client()->close(true);
return;
}
String out = _assembleHead(request->version());
request->client()->write(out.c_str(), _headLength);
_state = RESPONSE_WAIT_ACK;
}
size_t AsyncWebSocketResponse::_ack(AsyncWebServerRequest *request, size_t len, uint32_t time)
{
(void)time;
if(len)
_server->_newClient(request);
return 0;
}