Prvni ulozeni z chegewara githubu

This commit is contained in:
2023-02-25 16:13:53 +01:00
commit 01eb80dfe2
3279 changed files with 638407 additions and 0 deletions

View File

@ -0,0 +1,99 @@
/* The ESP32 has four SPi buses, however as of right now only two of
* them are available to use, HSPI and VSPI. Simply using the SPI API
* as illustrated in Arduino examples will use VSPI, leaving HSPI unused.
*
* However if we simply intialise two instance of the SPI class for both
* of these buses both can be used. However when just using these the Arduino
* way only will actually be outputting at a time.
*
* Logic analyser capture is in the same folder as this example as
* "multiple_bus_output.png"
*
* created 30/04/2018 by Alistair Symonds
*/
#include <SPI.h>
// Define ALTERNATE_PINS to use non-standard GPIO pins for SPI bus
#ifdef ALTERNATE_PINS
#define VSPI_MISO 2
#define VSPI_MOSI 4
#define VSPI_SCLK 0
#define VSPI_SS 33
#define HSPI_MISO 26
#define HSPI_MOSI 27
#define HSPI_SCLK 25
#define HSPI_SS 32
#else
#define VSPI_MISO MISO
#define VSPI_MOSI MOSI
#define VSPI_SCLK SCK
#define VSPI_SS SS
#define HSPI_MISO 12
#define HSPI_MOSI 13
#define HSPI_SCLK 14
#define HSPI_SS 15
#endif
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define VSPI FSPI
#endif
static const int spiClk = 1000000; // 1 MHz
//uninitalised pointers to SPI objects
SPIClass * vspi = NULL;
SPIClass * hspi = NULL;
void setup() {
//initialise two instances of the SPIClass attached to VSPI and HSPI respectively
vspi = new SPIClass(VSPI);
hspi = new SPIClass(HSPI);
//clock miso mosi ss
#ifndef ALTERNATE_PINS
//initialise vspi with default pins
//SCLK = 18, MISO = 19, MOSI = 23, SS = 5
vspi->begin();
#else
//alternatively route through GPIO pins of your choice
vspi->begin(VSPI_SCLK, VSPI_MISO, VSPI_MOSI, VSPI_SS); //SCLK, MISO, MOSI, SS
#endif
#ifndef ALTERNATE_PINS
//initialise hspi with default pins
//SCLK = 14, MISO = 12, MOSI = 13, SS = 15
hspi->begin();
#else
//alternatively route through GPIO pins
hspi->begin(HSPI_SCLK, HSPI_MISO, HSPI_MOSI, HSPI_SS); //SCLK, MISO, MOSI, SS
#endif
//set up slave select pins as outputs as the Arduino API
//doesn't handle automatically pulling SS low
pinMode(vspi->pinSS(), OUTPUT); //VSPI SS
pinMode(hspi->pinSS(), OUTPUT); //HSPI SS
}
// the loop function runs over and over again until power down or reset
void loop() {
//use the SPI buses
spiCommand(vspi, 0b01010101); // junk data to illustrate usage
spiCommand(hspi, 0b11001100);
delay(100);
}
void spiCommand(SPIClass *spi, byte data) {
//use it as you would the regular arduino SPI API
spi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(spi->pinSS(), LOW); //pull SS slow to prep other end for transfer
spi->transfer(data);
digitalWrite(spi->pinSS(), HIGH); //pull ss high to signify end of data transfer
spi->endTransaction();
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -0,0 +1,36 @@
#######################################
# Syntax Coloring Map SPI
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
SPI KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
end KEYWORD2
transfer KEYWORD2
setBitOrder KEYWORD2
setDataMode KEYWORD2
setClockDivider KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
SPI_CLOCK_DIV4 LITERAL1
SPI_CLOCK_DIV16 LITERAL1
SPI_CLOCK_DIV64 LITERAL1
SPI_CLOCK_DIV128 LITERAL1
SPI_CLOCK_DIV2 LITERAL1
SPI_CLOCK_DIV8 LITERAL1
SPI_CLOCK_DIV32 LITERAL1
SPI_CLOCK_DIV64 LITERAL1
SPI_MODE0 LITERAL1
SPI_MODE1 LITERAL1
SPI_MODE2 LITERAL1
SPI_MODE3 LITERAL1

View File

@ -0,0 +1,9 @@
name=SPI
version=2.0.0
author=Hristo Gochkov
maintainer=Hristo Gochkov <hristo@espressif.com>
sentence=Enables the communication with devices that use the Serial Peripheral Interface (SPI) Bus. For all Arduino boards, BUT Arduino DUE.
paragraph=
category=Signal Input/Output
url=http://arduino.cc/en/Reference/SPI
architectures=esp32

351
libraries/SPI/src/SPI.cpp Normal file
View File

@ -0,0 +1,351 @@
/*
SPI.cpp - SPI library for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SPI.h"
#include "esp32-hal-log.h"
#if !CONFIG_DISABLE_HAL_LOCKS
#define SPI_PARAM_LOCK() do {} while (xSemaphoreTake(paramLock, portMAX_DELAY) != pdPASS)
#define SPI_PARAM_UNLOCK() xSemaphoreGive(paramLock)
#else
#define SPI_PARAM_LOCK()
#define SPI_PARAM_UNLOCK()
#endif
SPIClass::SPIClass(uint8_t spi_bus)
:_spi_num(spi_bus)
,_spi(NULL)
,_use_hw_ss(false)
,_sck(-1)
,_miso(-1)
,_mosi(-1)
,_ss(-1)
,_div(0)
,_freq(1000000)
,_inTransaction(false)
#if !CONFIG_DISABLE_HAL_LOCKS
,paramLock(NULL)
{
if(paramLock==NULL){
paramLock = xSemaphoreCreateMutex();
if(paramLock==NULL){
log_e("xSemaphoreCreateMutex failed");
return;
}
}
}
#else
{}
#endif
SPIClass::~SPIClass()
{
end();
#if !CONFIG_DISABLE_HAL_LOCKS
if(paramLock!=NULL){
vSemaphoreDelete(paramLock);
paramLock = NULL;
}
#endif
}
void SPIClass::begin(int8_t sck, int8_t miso, int8_t mosi, int8_t ss)
{
if(_spi) {
return;
}
if(!_div) {
_div = spiFrequencyToClockDiv(_freq);
}
_spi = spiStartBus(_spi_num, _div, SPI_MODE0, SPI_MSBFIRST);
if(!_spi) {
return;
}
if(sck == -1 && miso == -1 && mosi == -1 && ss == -1) {
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
_sck = (_spi_num == FSPI) ? SCK : -1;
_miso = (_spi_num == FSPI) ? MISO : -1;
_mosi = (_spi_num == FSPI) ? MOSI : -1;
_ss = (_spi_num == FSPI) ? SS : -1;
#elif CONFIG_IDF_TARGET_ESP32C3
_sck = SCK;
_miso = MISO;
_mosi = MOSI;
_ss = SS;
#else
_sck = (_spi_num == VSPI) ? SCK : 14;
_miso = (_spi_num == VSPI) ? MISO : 12;
_mosi = (_spi_num == VSPI) ? MOSI : 13;
_ss = (_spi_num == VSPI) ? SS : 15;
#endif
} else {
_sck = sck;
_miso = miso;
_mosi = mosi;
_ss = ss;
}
spiAttachSCK(_spi, _sck);
spiAttachMISO(_spi, _miso);
spiAttachMOSI(_spi, _mosi);
}
void SPIClass::end()
{
if(!_spi) {
return;
}
spiDetachSCK(_spi, _sck);
spiDetachMISO(_spi, _miso);
spiDetachMOSI(_spi, _mosi);
setHwCs(false);
spiStopBus(_spi);
_spi = NULL;
}
void SPIClass::setHwCs(bool use)
{
if(use && !_use_hw_ss) {
spiAttachSS(_spi, 0, _ss);
spiSSEnable(_spi);
} else if(!use && _use_hw_ss) {
spiSSDisable(_spi);
spiDetachSS(_spi, _ss);
}
_use_hw_ss = use;
}
void SPIClass::setFrequency(uint32_t freq)
{
SPI_PARAM_LOCK();
//check if last freq changed
uint32_t cdiv = spiGetClockDiv(_spi);
if(_freq != freq || _div != cdiv) {
_freq = freq;
_div = spiFrequencyToClockDiv(_freq);
spiSetClockDiv(_spi, _div);
}
SPI_PARAM_UNLOCK();
}
void SPIClass::setClockDivider(uint32_t clockDiv)
{
SPI_PARAM_LOCK();
_div = clockDiv;
spiSetClockDiv(_spi, _div);
SPI_PARAM_UNLOCK();
}
uint32_t SPIClass::getClockDivider()
{
return spiGetClockDiv(_spi);
}
void SPIClass::setDataMode(uint8_t dataMode)
{
spiSetDataMode(_spi, dataMode);
}
void SPIClass::setBitOrder(uint8_t bitOrder)
{
spiSetBitOrder(_spi, bitOrder);
}
void SPIClass::beginTransaction(SPISettings settings)
{
SPI_PARAM_LOCK();
//check if last freq changed
uint32_t cdiv = spiGetClockDiv(_spi);
if(_freq != settings._clock || _div != cdiv) {
_freq = settings._clock;
_div = spiFrequencyToClockDiv(_freq);
}
spiTransaction(_spi, _div, settings._dataMode, settings._bitOrder);
_inTransaction = true;
}
void SPIClass::endTransaction()
{
if(_inTransaction){
_inTransaction = false;
spiEndTransaction(_spi);
SPI_PARAM_UNLOCK(); // <-- Im not sure should it be here or right after spiTransaction()
}
}
void SPIClass::write(uint8_t data)
{
if(_inTransaction){
return spiWriteByteNL(_spi, data);
}
spiWriteByte(_spi, data);
}
uint8_t SPIClass::transfer(uint8_t data)
{
if(_inTransaction){
return spiTransferByteNL(_spi, data);
}
return spiTransferByte(_spi, data);
}
void SPIClass::write16(uint16_t data)
{
if(_inTransaction){
return spiWriteShortNL(_spi, data);
}
spiWriteWord(_spi, data);
}
uint16_t SPIClass::transfer16(uint16_t data)
{
if(_inTransaction){
return spiTransferShortNL(_spi, data);
}
return spiTransferWord(_spi, data);
}
void SPIClass::write32(uint32_t data)
{
if(_inTransaction){
return spiWriteLongNL(_spi, data);
}
spiWriteLong(_spi, data);
}
uint32_t SPIClass::transfer32(uint32_t data)
{
if(_inTransaction){
return spiTransferLongNL(_spi, data);
}
return spiTransferLong(_spi, data);
}
void SPIClass::transferBits(uint32_t data, uint32_t * out, uint8_t bits)
{
if(_inTransaction){
return spiTransferBitsNL(_spi, data, out, bits);
}
spiTransferBits(_spi, data, out, bits);
}
/**
* @param data uint8_t *
* @param size uint32_t
*/
void SPIClass::writeBytes(const uint8_t * data, uint32_t size)
{
if(_inTransaction){
return spiWriteNL(_spi, data, size);
}
spiSimpleTransaction(_spi);
spiWriteNL(_spi, data, size);
spiEndTransaction(_spi);
}
void SPIClass::transfer(void * data, uint32_t size)
{
transferBytes((const uint8_t *)data, (uint8_t *)data, size);
}
/**
* @param data void *
* @param size uint32_t
*/
void SPIClass::writePixels(const void * data, uint32_t size)
{
if(_inTransaction){
return spiWritePixelsNL(_spi, data, size);
}
spiSimpleTransaction(_spi);
spiWritePixelsNL(_spi, data, size);
spiEndTransaction(_spi);
}
/**
* @param data uint8_t * data buffer. can be NULL for Read Only operation
* @param out uint8_t * output buffer. can be NULL for Write Only operation
* @param size uint32_t
*/
void SPIClass::transferBytes(const uint8_t * data, uint8_t * out, uint32_t size)
{
if(_inTransaction){
return spiTransferBytesNL(_spi, data, out, size);
}
spiTransferBytes(_spi, data, out, size);
}
/**
* @param data uint8_t *
* @param size uint8_t max for size is 64Byte
* @param repeat uint32_t
*/
void SPIClass::writePattern(const uint8_t * data, uint8_t size, uint32_t repeat)
{
if(size > 64) {
return; //max Hardware FIFO
}
uint32_t byte = (size * repeat);
uint8_t r = (64 / size);
const uint8_t max_bytes_FIFO = r * size; // Max number of whole patterns (in bytes) that can fit into the hardware FIFO
while(byte) {
if(byte > max_bytes_FIFO) {
writePattern_(data, size, r);
byte -= max_bytes_FIFO;
} else {
writePattern_(data, size, (byte / size));
byte = 0;
}
}
}
void SPIClass::writePattern_(const uint8_t * data, uint8_t size, uint8_t repeat)
{
uint8_t bytes = (size * repeat);
uint8_t buffer[64];
uint8_t * bufferPtr = &buffer[0];
const uint8_t * dataPtr;
uint8_t dataSize = bytes;
for(uint8_t i = 0; i < repeat; i++) {
dataSize = size;
dataPtr = data;
while(dataSize--) {
*bufferPtr = *dataPtr;
dataPtr++;
bufferPtr++;
}
}
writeBytes(&buffer[0], bytes);
}
#if CONFIG_IDF_TARGET_ESP32
SPIClass SPI(VSPI);
#else
SPIClass SPI(FSPI);
#endif

97
libraries/SPI/src/SPI.h Normal file
View File

@ -0,0 +1,97 @@
/*
SPI.h - SPI library for esp32
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _SPI_H_INCLUDED
#define _SPI_H_INCLUDED
#include <stdlib.h>
#include "pins_arduino.h"
#include "esp32-hal-spi.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#define SPI_HAS_TRANSACTION
class SPISettings
{
public:
SPISettings() :_clock(1000000), _bitOrder(SPI_MSBFIRST), _dataMode(SPI_MODE0) {}
SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) :_clock(clock), _bitOrder(bitOrder), _dataMode(dataMode) {}
uint32_t _clock;
uint8_t _bitOrder;
uint8_t _dataMode;
};
class SPIClass
{
private:
int8_t _spi_num;
spi_t * _spi;
bool _use_hw_ss;
int8_t _sck;
int8_t _miso;
int8_t _mosi;
int8_t _ss;
uint32_t _div;
uint32_t _freq;
bool _inTransaction;
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t paramLock=NULL;
#endif
void writePattern_(const uint8_t * data, uint8_t size, uint8_t repeat);
public:
SPIClass(uint8_t spi_bus=HSPI);
~SPIClass();
void begin(int8_t sck=-1, int8_t miso=-1, int8_t mosi=-1, int8_t ss=-1);
void end();
void setHwCs(bool use);
void setBitOrder(uint8_t bitOrder);
void setDataMode(uint8_t dataMode);
void setFrequency(uint32_t freq);
void setClockDivider(uint32_t clockDiv);
uint32_t getClockDivider();
void beginTransaction(SPISettings settings);
void endTransaction(void);
void transfer(void * data, uint32_t size);
uint8_t transfer(uint8_t data);
uint16_t transfer16(uint16_t data);
uint32_t transfer32(uint32_t data);
void transferBytes(const uint8_t * data, uint8_t * out, uint32_t size);
void transferBits(uint32_t data, uint32_t * out, uint8_t bits);
void write(uint8_t data);
void write16(uint16_t data);
void write32(uint32_t data);
void writeBytes(const uint8_t * data, uint32_t size);
void writePixels(const void * data, uint32_t size);//ili9341 compatible
void writePattern(const uint8_t * data, uint8_t size, uint32_t repeat);
spi_t * bus(){ return _spi; }
int8_t pinSS() { return _ss; }
};
extern SPIClass SPI;
#endif