This has existed for some time in the form of the lfs_traverse
function, however lfs_traverse is relatively unconventional and
has proven to not have been the most intuitive for users.
As pointed out by davidefer, the lookahead pointer modular arithmetic
does not work around integer overflow when the pointer size is not a
multiple of the block count.
To avoid overflow problems, the easy solution is to stop trying to
work around integer overflows and keep the lookahead offset inside the
block device. To make this work, the ack was modified into a resetable
counter that is decremented every block allocation.
As a plus, quite a bit of the allocation logic ended up simplified.
One of the big simplifications in littlefs's implementation is the
complete lack of tracking free blocks, allowing operations to simply
drop blocks that are no longer in use.
However, this means the lookahead buffer can easily contain outdated
blocks that were previously deleted. This is usually fine, as littlefs
will rescan the storage if it can't find a free block in the lookahead
buffer, but after changes that caused littlefs to more conservatively
respect the alloc acks (e611cf5), any scanned blocks after an ack would
be incorrectly trusted.
The fix is to eagerly scan ahead in the lookahead when we allocate so
that alloc acks are better able to discredit old lookahead blocks. Since
usually alloc acks are tightly coupled to allocations of one or two blocks,
this allows littlefs to properly rescan every set of allocations.
This may still be a concern if there is a long series of worn out
blocks, but in the worst case littlefs will conservatively avoid using
blocks it's not sure about.
Found by davidefer
Like most of the lfs_dir_t functions, lfs_dir_append is responsible for
updating the lfs_dir_t struct if the underlying directory block is
moved. This property makes handling worn out blocks much easier by
removing the amount of state that needs to be considered during a
directory update.
However, extending the dir chain is a bit of a corner case. It's not
changing the old block, but callers of lfs_dir_append do assume the
"entry" will reside in "dir" after lfs_dir_append completes.
This issue only occurs when creating files, since mkdir does not use
the entry after lfs_dir_append. Unfortunately, the tests against
extending the directory chain were all made using mkdir.
Found by schouleu
Before this patch, when calling lfs_mkdir or lfs_file_open with root
as the target, littlefs wouldn't find the path properly and happily
run into undefined behaviour.
The fix is to populate a directory entry for root in the lfs_dir_find
function. As an added plus, this allowed several special cases around
root to be completely dropped.
Suggested by sn00pster, LFS_CONFIG is an opt-in user provided
configuration file that will override the util implementation in
lfs_util.h. This is useful for allowing system-specific overrides
without needing to rely on git merges or other forms of patching
for updates.
Using gcc cross compilers and qemu:
- make test CC="arm-linux-gnueabi-gcc --static -mthumb" EXEC="qemu-arm"
- make test CC="powerpc-linux-gnu-gcc --static" EXEC="qemu-ppc"
- make test CC="mips-linux-gnu-gcc --static" EXEC="qemu-mips"
Also separated out Travis jobs and added some size reporting
Note: It's still expected to modify lfs_utils.h when porting littlefs
to a new target/system. There's just too much room for system-specific
improvements, such as taking advantage of CRC hardware.
Rather, encouraging modification of lfs_util.h and making it easy to
modify and debug should result in better integration with the consuming
systems.
This just adds a bunch of quality-of-life improvements that should help
development and integration in littlefs.
- Macros that require no side-effects are all-caps
- System includes are only brought in when needed
- Malloc/free wrappers
- LFS_NO_* checks for quickly disabling things at the command line
- At least a little-bit more docs
Required to support big-endian processors, with the most notable being
the PowerPC architecture.
On little-endian architectures, these conversions can be optimized out
and have no code impact.
Initial patch provided by gmouchard