mirror of
https://github.com/eledio-devices/thirdparty-littlefs.git
synced 2025-11-01 08:48:31 +01:00
Compare commits
1 Commits
license-no
...
rev-sum-st
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b24ddac95e |
9
.gitignore
vendored
9
.gitignore
vendored
@@ -1,9 +0,0 @@
|
||||
# Compilation output
|
||||
*.o
|
||||
*.d
|
||||
*.a
|
||||
|
||||
# Testing things
|
||||
blocks/
|
||||
lfs
|
||||
test.c
|
||||
240
.travis.yml
240
.travis.yml
@@ -1,224 +1,48 @@
|
||||
# Environment variables
|
||||
env:
|
||||
global:
|
||||
- CFLAGS=-Werror
|
||||
|
||||
# Common test script
|
||||
script:
|
||||
# make sure example can at least compile
|
||||
- sed -n '/``` c/,/```/{/```/d; p;}' README.md > test.c &&
|
||||
make all CFLAGS+="
|
||||
# make sure example can at least compile
|
||||
- sed -n '/``` c/,/```/{/```/d; p;}' README.md > test.c &&
|
||||
CFLAGS='
|
||||
-Duser_provided_block_device_read=NULL
|
||||
-Duser_provided_block_device_prog=NULL
|
||||
-Duser_provided_block_device_erase=NULL
|
||||
-Duser_provided_block_device_sync=NULL
|
||||
-include stdio.h"
|
||||
-include stdio.h -Werror' make all size
|
||||
|
||||
# run tests
|
||||
- make test QUIET=1
|
||||
# run tests
|
||||
- make test
|
||||
|
||||
# run tests with a few different configurations
|
||||
- make test QUIET=1 CFLAGS+="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1"
|
||||
- make test QUIET=1 CFLAGS+="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512"
|
||||
- make test QUIET=1 CFLAGS+="-DLFS_BLOCK_COUNT=1023 -DLFS_LOOKAHEAD=2048"
|
||||
|
||||
- make clean test QUIET=1 CFLAGS+="-DLFS_NO_INTRINSICS"
|
||||
|
||||
# compile and find the code size with the smallest configuration
|
||||
- make clean size
|
||||
OBJ="$(ls lfs*.o | tr '\n' ' ')"
|
||||
CFLAGS+="-DLFS_NO_ASSERT -DLFS_NO_DEBUG -DLFS_NO_WARN -DLFS_NO_ERROR"
|
||||
| tee sizes
|
||||
|
||||
# update status if we succeeded, compare with master if possible
|
||||
- |
|
||||
if [ "$TRAVIS_TEST_RESULT" -eq 0 ]
|
||||
then
|
||||
CURR=$(tail -n1 sizes | awk '{print $1}')
|
||||
PREV=$(curl -u $GEKY_BOT_STATUSES https://api.github.com/repos/$TRAVIS_REPO_SLUG/status/master \
|
||||
| jq -re "select(.sha != \"$TRAVIS_COMMIT\")
|
||||
| .statuses[] | select(.context == \"$STAGE/$NAME\").description
|
||||
| capture(\"code size is (?<size>[0-9]+)\").size" \
|
||||
|| echo 0)
|
||||
|
||||
STATUS="Passed, code size is ${CURR}B"
|
||||
if [ "$PREV" -ne 0 ]
|
||||
then
|
||||
STATUS="$STATUS ($(python -c "print '%+.2f' % (100*($CURR-$PREV)/$PREV.0)")%)"
|
||||
fi
|
||||
fi
|
||||
|
||||
# CI matrix
|
||||
jobs:
|
||||
include:
|
||||
# native testing
|
||||
- stage: test
|
||||
env:
|
||||
- STAGE=test
|
||||
- NAME=littlefs-x86
|
||||
|
||||
# cross-compile with ARM (thumb mode)
|
||||
- stage: test
|
||||
env:
|
||||
- STAGE=test
|
||||
- NAME=littlefs-arm
|
||||
- CC="arm-linux-gnueabi-gcc --static -mthumb"
|
||||
- EXEC="qemu-arm"
|
||||
install:
|
||||
- sudo apt-get install gcc-arm-linux-gnueabi qemu-user
|
||||
- arm-linux-gnueabi-gcc --version
|
||||
- qemu-arm -version
|
||||
|
||||
# cross-compile with PowerPC
|
||||
- stage: test
|
||||
env:
|
||||
- STAGE=test
|
||||
- NAME=littlefs-powerpc
|
||||
- CC="powerpc-linux-gnu-gcc --static"
|
||||
- EXEC="qemu-ppc"
|
||||
install:
|
||||
- sudo apt-get install gcc-powerpc-linux-gnu qemu-user
|
||||
- powerpc-linux-gnu-gcc --version
|
||||
- qemu-ppc -version
|
||||
|
||||
# cross-compile with MIPS
|
||||
- stage: test
|
||||
env:
|
||||
- STAGE=test
|
||||
- NAME=littlefs-mips
|
||||
- CC="mips-linux-gnu-gcc --static"
|
||||
- EXEC="qemu-mips"
|
||||
install:
|
||||
- sudo add-apt-repository -y "deb http://archive.ubuntu.com/ubuntu/ xenial main universe"
|
||||
- sudo apt-get -qq update
|
||||
- sudo apt-get install gcc-mips-linux-gnu qemu-user
|
||||
- mips-linux-gnu-gcc --version
|
||||
- qemu-mips -version
|
||||
# run tests with a few different configurations
|
||||
- CFLAGS="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1" make test
|
||||
- CFLAGS="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512" make test
|
||||
- CFLAGS="-DLFS_BLOCK_COUNT=1023" make test
|
||||
- CFLAGS="-DLFS_LOOKAHEAD=2047" make test
|
||||
|
||||
# self-host with littlefs-fuse for fuzz test
|
||||
- stage: test
|
||||
env:
|
||||
- STAGE=test
|
||||
- NAME=littlefs-fuse
|
||||
install:
|
||||
- sudo apt-get install libfuse-dev
|
||||
- git clone --depth 1 https://github.com/geky/littlefs-fuse
|
||||
- fusermount -V
|
||||
- gcc --version
|
||||
before_script:
|
||||
# setup disk for littlefs-fuse
|
||||
- rm -rf littlefs-fuse/littlefs/*
|
||||
- cp -r $(git ls-tree --name-only HEAD) littlefs-fuse/littlefs
|
||||
- make -C littlefs-fuse
|
||||
|
||||
- mkdir mount
|
||||
- sudo chmod a+rw /dev/loop0
|
||||
- dd if=/dev/zero bs=512 count=2048 of=disk
|
||||
- losetup /dev/loop0 disk
|
||||
script:
|
||||
# self-host test
|
||||
- make -C littlefs-fuse
|
||||
- littlefs-fuse/lfs --format /dev/loop0
|
||||
- littlefs-fuse/lfs /dev/loop0 mount
|
||||
|
||||
- littlefs-fuse/lfs --format /dev/loop0
|
||||
- littlefs-fuse/lfs /dev/loop0 mount
|
||||
- ls mount
|
||||
- mkdir mount/littlefs
|
||||
- cp -r $(git ls-tree --name-only HEAD) mount/littlefs
|
||||
- cd mount/littlefs
|
||||
- ls
|
||||
- make -B test_dirs
|
||||
|
||||
- ls mount
|
||||
- mkdir mount/littlefs
|
||||
- cp -r $(git ls-tree --name-only HEAD) mount/littlefs
|
||||
- cd mount/littlefs
|
||||
- ls
|
||||
- make -B test_dirs test_files QUIET=1
|
||||
|
||||
# Automatically update releases
|
||||
- stage: deploy
|
||||
env:
|
||||
- STAGE=deploy
|
||||
- NAME=deploy
|
||||
script:
|
||||
# Update tag for version defined in lfs.h
|
||||
- LFS_VERSION=$(grep -ox '#define LFS_VERSION .*' lfs.h | cut -d ' ' -f3)
|
||||
- LFS_VERSION_MAJOR=$((0xffff & ($LFS_VERSION >> 16)))
|
||||
- LFS_VERSION_MINOR=$((0xffff & ($LFS_VERSION >> 0)))
|
||||
- LFS_VERSION="v$LFS_VERSION_MAJOR.$LFS_VERSION_MINOR"
|
||||
- echo "littlefs version $LFS_VERSION"
|
||||
- |
|
||||
curl -u $GEKY_BOT_RELEASES -X POST \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/git/refs \
|
||||
-d "{
|
||||
\"ref\": \"refs/tags/$LFS_VERSION\",
|
||||
\"sha\": \"$TRAVIS_COMMIT\"
|
||||
}"
|
||||
- |
|
||||
curl -f -u $GEKY_BOT_RELEASES -X PATCH \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/git/refs/tags/$LFS_VERSION \
|
||||
-d "{
|
||||
\"sha\": \"$TRAVIS_COMMIT\"
|
||||
}"
|
||||
# Create release notes from commits
|
||||
- LFS_PREV_VERSION="v$LFS_VERSION_MAJOR.$(($LFS_VERSION_MINOR-1))"
|
||||
- |
|
||||
if [ $(git tag -l "$LFS_PREV_VERSION") ]
|
||||
then
|
||||
curl -u $GEKY_BOT_RELEASES -X POST \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases \
|
||||
-d "{
|
||||
\"tag_name\": \"$LFS_VERSION\",
|
||||
\"name\": \"$LFS_VERSION\"
|
||||
}"
|
||||
RELEASE=$(
|
||||
curl -f -u $GEKY_BOT_RELEASES \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases/tags/$LFS_VERSION
|
||||
)
|
||||
CHANGES=$(
|
||||
git log --oneline $LFS_PREV_VERSION.. --grep='^Merge' --invert-grep
|
||||
)
|
||||
curl -f -u $GEKY_BOT_RELEASES -X PATCH \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases/$(
|
||||
jq -r '.id' <<< "$RELEASE"
|
||||
) \
|
||||
-d "$(
|
||||
jq -s '{
|
||||
"body": ((.[0] // "" | sub("(?<=\n)#+ Changes.*"; ""; "mi"))
|
||||
+ "### Changes\n\n" + .[1])
|
||||
}' <(jq '.body' <<< "$RELEASE") <(jq -sR '.' <<< "$CHANGES")
|
||||
)"
|
||||
fi
|
||||
|
||||
# Manage statuses
|
||||
before_install:
|
||||
- |
|
||||
curl -u $GEKY_BOT_STATUSES -X POST \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
|
||||
-d "{
|
||||
\"context\": \"$STAGE/$NAME\",
|
||||
\"state\": \"pending\",
|
||||
\"description\": \"${STATUS:-In progress}\",
|
||||
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
|
||||
}"
|
||||
- fusermount -V
|
||||
- gcc --version
|
||||
|
||||
after_failure:
|
||||
- |
|
||||
curl -u $GEKY_BOT_STATUSES -X POST \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
|
||||
-d "{
|
||||
\"context\": \"$STAGE/$NAME\",
|
||||
\"state\": \"failure\",
|
||||
\"description\": \"${STATUS:-Failed}\",
|
||||
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
|
||||
}"
|
||||
install:
|
||||
- sudo apt-get install libfuse-dev
|
||||
- git clone --depth 1 https://github.com/geky/littlefs-fuse
|
||||
|
||||
after_success:
|
||||
- |
|
||||
curl -u $GEKY_BOT_STATUSES -X POST \
|
||||
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
|
||||
-d "{
|
||||
\"context\": \"$STAGE/$NAME\",
|
||||
\"state\": \"success\",
|
||||
\"description\": \"${STATUS:-Passed}\",
|
||||
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
|
||||
}"
|
||||
before_script:
|
||||
- rm -rf littlefs-fuse/littlefs/*
|
||||
- cp -r $(git ls-tree --name-only HEAD) littlefs-fuse/littlefs
|
||||
|
||||
# Job control
|
||||
stages:
|
||||
- name: test
|
||||
- name: deploy
|
||||
if: branch = master AND type = push
|
||||
- mkdir mount
|
||||
- sudo chmod a+rw /dev/loop0
|
||||
- dd if=/dev/zero bs=512 count=2048 of=disk
|
||||
- losetup /dev/loop0 disk
|
||||
|
||||
461
DESIGN.md
461
DESIGN.md
@@ -1,6 +1,6 @@
|
||||
## The design of the little filesystem
|
||||
|
||||
A little fail-safe filesystem designed for embedded systems.
|
||||
The littlefs is a little fail-safe filesystem designed for embedded systems.
|
||||
|
||||
```
|
||||
| | | .---._____
|
||||
@@ -16,9 +16,9 @@ more about filesystem design by tackling the relative unsolved problem of
|
||||
managing a robust filesystem resilient to power loss on devices
|
||||
with limited RAM and ROM.
|
||||
|
||||
The embedded systems the littlefs is targeting are usually 32 bit
|
||||
microcontrollers with around 32KB of RAM and 512KB of ROM. These are
|
||||
often paired with SPI NOR flash chips with about 4MB of flash storage.
|
||||
The embedded systems the littlefs is targeting are usually 32bit
|
||||
microcontrollers with around 32Kbytes of RAM and 512Kbytes of ROM. These are
|
||||
often paired with SPI NOR flash chips with about 4Mbytes of flash storage.
|
||||
|
||||
Flash itself is a very interesting piece of technology with quite a bit of
|
||||
nuance. Unlike most other forms of storage, writing to flash requires two
|
||||
@@ -27,23 +27,22 @@ cheap, and can be very granular. For NOR flash specifically, byte-level
|
||||
programs are quite common. Erasing, however, requires an expensive operation
|
||||
that forces the state of large blocks of memory to reset in a destructive
|
||||
reaction that gives flash its name. The [Wikipedia entry](https://en.wikipedia.org/wiki/Flash_memory)
|
||||
has more information if you are interested in how this works.
|
||||
has more information if you are interesting in how this works.
|
||||
|
||||
This leaves us with an interesting set of limitations that can be simplified
|
||||
to three strong requirements:
|
||||
|
||||
1. **Power-loss resilient** - This is the main goal of the littlefs and the
|
||||
focus of this project.
|
||||
|
||||
Embedded systems are usually designed without a shutdown routine and a
|
||||
notable lack of user interface for recovery, so filesystems targeting
|
||||
embedded systems must be prepared to lose power at any given time.
|
||||
1. **Fail-safe** - This is actually the main goal of the littlefs and the focus
|
||||
of this project. Embedded systems are usually designed without a shutdown
|
||||
routine and a notable lack of user interface for recovery, so filesystems
|
||||
targeting embedded systems should be prepared to lose power an any given
|
||||
time.
|
||||
|
||||
Despite this state of things, there are very few embedded filesystems that
|
||||
handle power loss in a reasonable manner, and most can become corrupted if
|
||||
the user is unlucky enough.
|
||||
handle power loss in a reasonable manner, and can become corrupted if the
|
||||
user is unlucky enough.
|
||||
|
||||
2. **Wear leveling** - Due to the destructive nature of flash, most flash
|
||||
2. **Wear awareness** - Due to the destructive nature of flash, most flash
|
||||
chips have a limited number of erase cycles, usually in the order of around
|
||||
100,000 erases per block for NOR flash. Filesystems that don't take wear
|
||||
into account can easily burn through blocks used to store frequently updated
|
||||
@@ -53,8 +52,7 @@ to three strong requirements:
|
||||
which stores a file allocation table (FAT) at a specific offset from the
|
||||
beginning of disk. Every block allocation will update this table, and after
|
||||
100,000 updates, the block will likely go bad, rendering the filesystem
|
||||
unusable even if there are many more erase cycles available on the storage
|
||||
as a whole.
|
||||
unusable even if there are many more erase cycles available on the storage.
|
||||
|
||||
3. **Bounded RAM/ROM** - Even with the design difficulties presented by the
|
||||
previous two limitations, we have already seen several flash filesystems
|
||||
@@ -74,32 +72,33 @@ to three strong requirements:
|
||||
|
||||
## Existing designs?
|
||||
|
||||
There are of course, many different existing filesystem. Here is a very rough
|
||||
There are of course, many different existing filesystem. Heres a very rough
|
||||
summary of the general ideas behind some of them.
|
||||
|
||||
Most of the existing filesystems fall into the one big category of filesystem
|
||||
designed in the early days of spinny magnet disks. While there is a vast amount
|
||||
of interesting technology and ideas in this area, the nature of spinny magnet
|
||||
disks encourage properties, such as grouping writes near each other, that don't
|
||||
disks encourage properties such as grouping writes near each other, that don't
|
||||
make as much sense on recent storage types. For instance, on flash, write
|
||||
locality is not important and can actually increase wear.
|
||||
locality is not as important and can actually increase wear destructively.
|
||||
|
||||
One of the most popular designs for flash filesystems is called the
|
||||
[logging filesystem](https://en.wikipedia.org/wiki/Log-structured_file_system).
|
||||
The flash filesystems [jffs](https://en.wikipedia.org/wiki/JFFS)
|
||||
and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In a
|
||||
logging filesystem, data is not stored in a data structure on disk, but instead
|
||||
and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In
|
||||
logging filesystem, data is not store in a data structure on disk, but instead
|
||||
the changes to the files are stored on disk. This has several neat advantages,
|
||||
such as the fact that the data is written in a cyclic log format and naturally
|
||||
such as the fact that the data is written in a cyclic log format naturally
|
||||
wear levels as a side effect. And, with a bit of error detection, the entire
|
||||
filesystem can easily be designed to be resilient to power loss. The
|
||||
journaling component of most modern day filesystems is actually a reduced
|
||||
journalling component of most modern day filesystems is actually a reduced
|
||||
form of a logging filesystem. However, logging filesystems have a difficulty
|
||||
scaling as the size of storage increases. And most filesystems compensate by
|
||||
caching large parts of the filesystem in RAM, a strategy that is inappropriate
|
||||
caching large parts of the filesystem in RAM, a strategy that is unavailable
|
||||
for embedded systems.
|
||||
|
||||
Another interesting filesystem design technique is that of [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
|
||||
Another interesting filesystem design technique that the littlefs borrows the
|
||||
most from, is the [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
|
||||
A good example of this is the [btrfs](https://en.wikipedia.org/wiki/Btrfs)
|
||||
filesystem. COW filesystems can easily recover from corrupted blocks and have
|
||||
natural protection against power loss. However, if they are not designed with
|
||||
@@ -109,14 +108,14 @@ where the COW data structures are synchronized.
|
||||
## Metadata pairs
|
||||
|
||||
The core piece of technology that provides the backbone for the littlefs is
|
||||
the concept of metadata pairs. The key idea here is that any metadata that
|
||||
the concept of metadata pairs. The key idea here, is that any metadata that
|
||||
needs to be updated atomically is stored on a pair of blocks tagged with
|
||||
a revision count and checksum. Every update alternates between these two
|
||||
pairs, so that at any time there is always a backup containing the previous
|
||||
state of the metadata.
|
||||
|
||||
Consider a small example where each metadata pair has a revision count,
|
||||
a number as data, and the XOR of the block as a quick checksum. If
|
||||
a number as data, and the xor of the block as a quick checksum. If
|
||||
we update the data to a value of 9, and then to a value of 5, here is
|
||||
what the pair of blocks may look like after each update:
|
||||
```
|
||||
@@ -132,7 +131,7 @@ what the pair of blocks may look like after each update:
|
||||
After each update, we can find the most up to date value of data by looking
|
||||
at the revision count.
|
||||
|
||||
Now consider what the blocks may look like if we suddenly lose power while
|
||||
Now consider what the blocks may look like if we suddenly loss power while
|
||||
changing the value of data to 5:
|
||||
```
|
||||
block 1 block 2 block 1 block 2 block 1 block 2
|
||||
@@ -151,19 +150,19 @@ check our checksum we notice that block 1 was corrupted. So we fall back to
|
||||
block 2 and use the value 9.
|
||||
|
||||
Using this concept, the littlefs is able to update metadata blocks atomically.
|
||||
There are a few other tweaks, such as using a 32 bit CRC and using sequence
|
||||
There are a few other tweaks, such as using a 32bit crc and using sequence
|
||||
arithmetic to handle revision count overflow, but the basic concept
|
||||
is the same. These metadata pairs define the backbone of the littlefs, and the
|
||||
rest of the filesystem is built on top of these atomic updates.
|
||||
|
||||
## Non-meta data
|
||||
## Files
|
||||
|
||||
Now, the metadata pairs do come with some drawbacks. Most notably, each pair
|
||||
requires two blocks for each block of data. I'm sure users would be very
|
||||
unhappy if their storage was suddenly cut in half! Instead of storing
|
||||
everything in these metadata blocks, the littlefs uses a COW data structure
|
||||
for files which is in turn pointed to by a metadata block. When
|
||||
we update a file, we create copies of any blocks that are modified until
|
||||
we update a file, we create a copies of any blocks that are modified until
|
||||
the metadata blocks are updated with the new copy. Once the metadata block
|
||||
points to the new copy, we deallocate the old blocks that are no longer in use.
|
||||
|
||||
@@ -186,7 +185,7 @@ Here is what updating a one-block file may look like:
|
||||
update data in file update metadata pair
|
||||
```
|
||||
|
||||
It doesn't matter if we lose power while writing new data to block 5,
|
||||
It doesn't matter if we lose power while writing block 5 with the new data,
|
||||
since the old data remains unmodified in block 4. This example also
|
||||
highlights how the atomic updates of the metadata blocks provide a
|
||||
synchronization barrier for the rest of the littlefs.
|
||||
@@ -201,14 +200,14 @@ Now we could just leave files here, copying the entire file on write
|
||||
provides the synchronization without the duplicated memory requirements
|
||||
of the metadata blocks. However, we can do a bit better.
|
||||
|
||||
## CTZ skip-lists
|
||||
## CTZ linked-lists
|
||||
|
||||
There are many different data structures for representing the actual
|
||||
files in filesystems. Of these, the littlefs uses a rather unique [COW](https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg)
|
||||
data structure that allows the filesystem to reuse unmodified parts of the
|
||||
file without additional metadata pairs.
|
||||
|
||||
First lets consider storing files in a simple linked-list. What happens when we
|
||||
First lets consider storing files in a simple linked-list. What happens when
|
||||
append a block? We have to change the last block in the linked-list to point
|
||||
to this new block, which means we have to copy out the last block, and change
|
||||
the second-to-last block, and then the third-to-last, and so on until we've
|
||||
@@ -225,12 +224,12 @@ Exhibit A: A linked-list
|
||||
|
||||
To get around this, the littlefs, at its heart, stores files backwards. Each
|
||||
block points to its predecessor, with the first block containing no pointers.
|
||||
If you think about for a while, it starts to make a bit of sense. Appending
|
||||
blocks just point to their predecessor and no other blocks need to be updated.
|
||||
If we update a block in the middle, we will need to copy out the blocks that
|
||||
follow, but can reuse the blocks before the modified block. Since most file
|
||||
operations either reset the file each write or append to files, this design
|
||||
avoids copying the file in the most common cases.
|
||||
If you think about this, it makes a bit of sense. Appending blocks just point
|
||||
to their predecessor and no other blocks need to be updated. If we update
|
||||
a block in the middle, we will need to copy out the blocks that follow,
|
||||
but can reuse the blocks before the modified block. Since most file operations
|
||||
either reset the file each write or append to files, this design avoids
|
||||
copying the file in the most common cases.
|
||||
|
||||
```
|
||||
Exhibit B: A backwards linked-list
|
||||
@@ -242,24 +241,24 @@ Exhibit B: A backwards linked-list
|
||||
```
|
||||
|
||||
However, a backwards linked-list does come with a rather glaring problem.
|
||||
Iterating over a file _in order_ has a runtime cost of O(n^2). Gah! A quadratic
|
||||
runtime to just _read_ a file? That's awful. Keep in mind reading files is
|
||||
Iterating over a file _in order_ has a runtime of O(n^2). Gah! A quadratic
|
||||
runtime to just _read_ a file? That's awful. Keep in mind reading files are
|
||||
usually the most common filesystem operation.
|
||||
|
||||
To avoid this problem, the littlefs uses a multilayered linked-list. For
|
||||
every nth block where n is divisible by 2^x, the block contains a pointer
|
||||
to block n-2^x. So each block contains anywhere from 1 to log2(n) pointers
|
||||
that skip to various sections of the preceding list. If you're familiar with
|
||||
data-structures, you may have recognized that this is a type of deterministic
|
||||
skip-list.
|
||||
every block that is divisible by a power of two, the block contains an
|
||||
additional pointer that points back by that power of two. Another way of
|
||||
thinking about this design is that there are actually many linked-lists
|
||||
threaded together, with each linked-lists skipping an increasing number
|
||||
of blocks. If you're familiar with data-structures, you may have also
|
||||
recognized that this is a deterministic skip-list.
|
||||
|
||||
The name comes from the use of the
|
||||
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros)
|
||||
instruction, which allows us to calculate the power-of-two factors efficiently.
|
||||
For a given block n, the block contains ctz(n)+1 pointers.
|
||||
To find the power of two factors efficiently, we can use the instruction
|
||||
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros),
|
||||
which is where this linked-list's name comes from.
|
||||
|
||||
```
|
||||
Exhibit C: A backwards CTZ skip-list
|
||||
Exhibit C: A backwards CTZ linked-list
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |<-| data 4 |<-| data 5 |
|
||||
| |<-| |--| |<-| |--| | | |
|
||||
@@ -267,9 +266,6 @@ Exhibit C: A backwards CTZ skip-list
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
The additional pointers allow us to navigate the data-structure on disk
|
||||
much more efficiently than in a singly linked-list.
|
||||
|
||||
Taking exhibit C for example, here is the path from data block 5 to data
|
||||
block 1. You can see how data block 3 was completely skipped:
|
||||
```
|
||||
@@ -289,132 +285,15 @@ The path to data block 0 is even more quick, requiring only two jumps:
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
We can find the runtime complexity by looking at the path to any block from
|
||||
the block containing the most pointers. Every step along the path divides
|
||||
the search space for the block in half. This gives us a runtime of O(log n).
|
||||
To get to the block with the most pointers, we can perform the same steps
|
||||
backwards, which puts the runtime at O(2 log n) = O(log n). The interesting
|
||||
part about this data structure is that this optimal path occurs naturally
|
||||
if we greedily choose the pointer that covers the most distance without passing
|
||||
our target block.
|
||||
The CTZ linked-list has quite a few interesting properties. All of the pointers
|
||||
in the block can be found by just knowing the index in the list of the current
|
||||
block, and, with a bit of math, the amortized overhead for the linked-list is
|
||||
only two pointers per block. Most importantly, the CTZ linked-list has a
|
||||
worst case lookup runtime of O(logn), which brings the runtime of reading a
|
||||
file down to O(n logn). Given that the constant runtime is divided by the
|
||||
amount of data we can store in a block, this is pretty reasonable.
|
||||
|
||||
So now we have a representation of files that can be appended trivially with
|
||||
a runtime of O(1), and can be read with a worst case runtime of O(n log n).
|
||||
Given that the the runtime is also divided by the amount of data we can store
|
||||
in a block, this is pretty reasonable.
|
||||
|
||||
Unfortunately, the CTZ skip-list comes with a few questions that aren't
|
||||
straightforward to answer. What is the overhead? How do we handle more
|
||||
pointers than we can store in a block? How do we store the skip-list in
|
||||
a directory entry?
|
||||
|
||||
One way to find the overhead per block is to look at the data structure as
|
||||
multiple layers of linked-lists. Each linked-list skips twice as many blocks
|
||||
as the previous linked-list. Another way of looking at it is that each
|
||||
linked-list uses half as much storage per block as the previous linked-list.
|
||||
As we approach infinity, the number of pointers per block forms a geometric
|
||||
series. Solving this geometric series gives us an average of only 2 pointers
|
||||
per block.
|
||||
|
||||

|
||||
|
||||
Finding the maximum number of pointers in a block is a bit more complicated,
|
||||
but since our file size is limited by the integer width we use to store the
|
||||
size, we can solve for it. Setting the overhead of the maximum pointers equal
|
||||
to the block size we get the following equation. Note that a smaller block size
|
||||
results in more pointers, and a larger word width results in larger pointers.
|
||||
|
||||

|
||||
|
||||
where:
|
||||
B = block size in bytes
|
||||
w = word width in bits
|
||||
|
||||
Solving the equation for B gives us the minimum block size for various word
|
||||
widths:
|
||||
32 bit CTZ skip-list = minimum block size of 104 bytes
|
||||
64 bit CTZ skip-list = minimum block size of 448 bytes
|
||||
|
||||
Since littlefs uses a 32 bit word size, we are limited to a minimum block
|
||||
size of 104 bytes. This is a perfectly reasonable minimum block size, with most
|
||||
block sizes starting around 512 bytes. So we can avoid additional logic to
|
||||
avoid overflowing our block's capacity in the CTZ skip-list.
|
||||
|
||||
So, how do we store the skip-list in a directory entry? A naive approach would
|
||||
be to store a pointer to the head of the skip-list, the length of the file
|
||||
in bytes, the index of the head block in the skip-list, and the offset in the
|
||||
head block in bytes. However this is a lot of information, and we can observe
|
||||
that a file size maps to only one block index + offset pair. So it should be
|
||||
sufficient to store only the pointer and file size.
|
||||
|
||||
But there is one problem, calculating the block index + offset pair from a
|
||||
file size doesn't have an obvious implementation.
|
||||
|
||||
We can start by just writing down an equation. The first idea that comes to
|
||||
mind is to just use a for loop to sum together blocks until we reach our
|
||||
file size. We can write this equation as a summation:
|
||||
|
||||

|
||||
|
||||
where:
|
||||
B = block size in bytes
|
||||
w = word width in bits
|
||||
n = block index in skip-list
|
||||
N = file size in bytes
|
||||
|
||||
And this works quite well, but is not trivial to calculate. This equation
|
||||
requires O(n) to compute, which brings the entire runtime of reading a file
|
||||
to O(n^2 log n). Fortunately, the additional O(n) does not need to touch disk,
|
||||
so it is not completely unreasonable. But if we could solve this equation into
|
||||
a form that is easily computable, we can avoid a big slowdown.
|
||||
|
||||
Unfortunately, the summation of the CTZ instruction presents a big challenge.
|
||||
How would you even begin to reason about integrating a bitwise instruction?
|
||||
Fortunately, there is a powerful tool I've found useful in these situations:
|
||||
The [On-Line Encyclopedia of Integer Sequences (OEIS)](https://oeis.org/).
|
||||
If we work out the first couple of values in our summation, we find that CTZ
|
||||
maps to [A001511](https://oeis.org/A001511), and its partial summation maps
|
||||
to [A005187](https://oeis.org/A005187), and surprisingly, both of these
|
||||
sequences have relatively trivial equations! This leads us to a rather
|
||||
unintuitive property:
|
||||
|
||||

|
||||
|
||||
where:
|
||||
ctz(x) = the number of trailing bits that are 0 in x
|
||||
popcount(x) = the number of bits that are 1 in x
|
||||
|
||||
It's a bit bewildering that these two seemingly unrelated bitwise instructions
|
||||
are related by this property. But if we start to dissect this equation we can
|
||||
see that it does hold. As n approaches infinity, we do end up with an average
|
||||
overhead of 2 pointers as we find earlier. And popcount seems to handle the
|
||||
error from this average as it accumulates in the CTZ skip-list.
|
||||
|
||||
Now we can substitute into the original equation to get a trivial equation
|
||||
for a file size:
|
||||
|
||||

|
||||
|
||||
Unfortunately, we're not quite done. The popcount function is non-injective,
|
||||
so we can only find the file size from the block index, not the other way
|
||||
around. However, we can solve for an n' block index that is greater than n
|
||||
with an error bounded by the range of the popcount function. We can then
|
||||
repeatedly substitute this n' into the original equation until the error
|
||||
is smaller than the integer division. As it turns out, we only need to
|
||||
perform this substitution once. Now we directly calculate our block index:
|
||||
|
||||

|
||||
|
||||
Now that we have our block index n, we can just plug it back into the above
|
||||
equation to find the offset. However, we do need to rearrange the equation
|
||||
a bit to avoid integer overflow:
|
||||
|
||||

|
||||
|
||||
The solution involves quite a bit of math, but computers are very good at math.
|
||||
Now we can solve for both the block index and offset from the file size in O(1).
|
||||
|
||||
Here is what it might look like to update a file stored with a CTZ skip-list:
|
||||
Here is what it might look like to update a file stored with a CTZ linked-list:
|
||||
```
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
@@ -488,7 +367,7 @@ v
|
||||
## Block allocation
|
||||
|
||||
So those two ideas provide the grounds for the filesystem. The metadata pairs
|
||||
give us directories, and the CTZ skip-lists give us files. But this leaves
|
||||
give us directories, and the CTZ linked-lists give us files. But this leaves
|
||||
one big [elephant](https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg)
|
||||
of a question. How do we get those blocks in the first place?
|
||||
|
||||
@@ -501,17 +380,16 @@ scanned to find the most recent free list, but once the list was found the
|
||||
state of all free blocks becomes known.
|
||||
|
||||
However, this approach had several issues:
|
||||
|
||||
- There was a lot of nuanced logic for adding blocks to the free list without
|
||||
modifying the blocks, since the blocks remain active until the metadata is
|
||||
updated.
|
||||
- The free list had to support both additions and removals in FIFO order while
|
||||
- The free list had to support both additions and removals in fifo order while
|
||||
minimizing block erases.
|
||||
- The free list had to handle the case where the file system completely ran
|
||||
out of blocks and may no longer be able to add blocks to the free list.
|
||||
- If we used a revision count to track the most recently updated free list,
|
||||
metadata blocks that were left unmodified were ticking time bombs that would
|
||||
cause the system to go haywire if the revision count overflowed.
|
||||
cause the system to go haywire if the revision count overflowed
|
||||
- Every single metadata block wasted space to store these free list references.
|
||||
|
||||
Actually, to simplify, this approach had one massive glaring issue: complexity.
|
||||
@@ -541,7 +419,7 @@ would have an abhorrent runtime.
|
||||
So the littlefs compromises. It doesn't store a bitmap the size of the storage,
|
||||
but it does store a little bit-vector that contains a fixed set lookahead
|
||||
for block allocations. During a block allocation, the lookahead vector is
|
||||
checked for any free blocks. If there are none, the lookahead region jumps
|
||||
checked for any free blocks, if there are none, the lookahead region jumps
|
||||
forward and the entire filesystem is scanned for free blocks.
|
||||
|
||||
Here's what it might look like to allocate 4 blocks on a decently busy
|
||||
@@ -624,7 +502,7 @@ So, as a solution, the littlefs adopted a sort of threaded tree. Each
|
||||
directory not only contains pointers to all of its children, but also a
|
||||
pointer to the next directory. These pointers create a linked-list that
|
||||
is threaded through all of the directories in the filesystem. Since we
|
||||
only use this linked list to check for existence, the order doesn't actually
|
||||
only use this linked list to check for existance, the order doesn't actually
|
||||
matter. As an added plus, we can repurpose the pointer for the individual
|
||||
directory linked-lists and avoid using any additional space.
|
||||
|
||||
@@ -775,17 +653,9 @@ deorphan step that simply iterates through every directory in the linked-list
|
||||
and checks it against every directory entry in the filesystem to see if it
|
||||
has a parent. The deorphan step occurs on the first block allocation after
|
||||
boot, so orphans should never cause the littlefs to run out of storage
|
||||
prematurely. Note that the deorphan step never needs to run in a read-only
|
||||
filesystem.
|
||||
prematurely.
|
||||
|
||||
## The move problem
|
||||
|
||||
Now we have a real problem. How do we move things between directories while
|
||||
remaining power resilient? Even looking at the problem from a high level,
|
||||
it seems impossible. We can update directory blocks atomically, but atomically
|
||||
updating two independent directory blocks is not an atomic operation.
|
||||
|
||||
Here's the steps the filesystem may go through to move a directory:
|
||||
And for my final trick, moving a directory:
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
@@ -846,142 +716,25 @@ v
|
||||
'--------'
|
||||
```
|
||||
|
||||
We can leave any orphans up to the deorphan step to collect, but that doesn't
|
||||
help the case where dir A has both dir B and the root dir as parents if we
|
||||
lose power inconveniently.
|
||||
Note that once again we don't care about the ordering of directories in the
|
||||
linked-list, so we can simply leave directories in their old positions. This
|
||||
does make the diagrams a bit hard to draw, but the littlefs doesn't really
|
||||
care.
|
||||
|
||||
Initially, you might think this is fine. Dir A _might_ end up with two parents,
|
||||
but the filesystem will still work as intended. But then this raises the
|
||||
question of what do we do when the dir A wears out? For other directory blocks
|
||||
we can update the parent pointer, but for a dir with two parents we would need
|
||||
work out how to update both parents. And the check for multiple parents would
|
||||
need to be carried out for every directory, even if the directory has never
|
||||
been moved.
|
||||
|
||||
It also presents a bad user-experience, since the condition of ending up with
|
||||
two parents is rare, it's unlikely user-level code will be prepared. Just think
|
||||
about how a user would recover from a multi-parented directory. They can't just
|
||||
remove one directory, since remove would report the directory as "not empty".
|
||||
|
||||
Other atomic filesystems simple COW the entire directory tree. But this
|
||||
introduces a significant bit of complexity, which leads to code size, along
|
||||
with a surprisingly expensive runtime cost during what most users assume is
|
||||
a single pointer update.
|
||||
|
||||
Another option is to update the directory block we're moving from to point
|
||||
to the destination with a sort of predicate that we have moved if the
|
||||
destination exists. Unfortunately, the omnipresent concern of wear could
|
||||
cause any of these directory entries to change blocks, and changing the
|
||||
entry size before a move introduces complications if it spills out of
|
||||
the current directory block.
|
||||
|
||||
So how do we go about moving a directory atomically?
|
||||
|
||||
We rely on the improbableness of power loss.
|
||||
|
||||
Power loss during a move is certainly possible, but it's actually relatively
|
||||
rare. Unless a device is writing to a filesystem constantly, it's unlikely that
|
||||
a power loss will occur during filesystem activity. We still need to handle
|
||||
the condition, but runtime during a power loss takes a back seat to the runtime
|
||||
during normal operations.
|
||||
|
||||
So what littlefs does is inelegantly simple. When littlefs moves a file, it
|
||||
marks the file as "moving". This is stored as a single bit in the directory
|
||||
entry and doesn't take up much space. Then littlefs moves the directory,
|
||||
finishing with the complete remove of the "moving" directory entry.
|
||||
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir B |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
|
||||
| update root directory to mark directory A as moving
|
||||
v
|
||||
|
||||
.----------.
|
||||
|root dir |-.
|
||||
| pair 0 | |
|
||||
.-------| moving A!|-'
|
||||
| '----------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir B |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
|
||||
| update directory B to point to directory A
|
||||
v
|
||||
|
||||
.----------.
|
||||
|root dir |-.
|
||||
| pair 0 | |
|
||||
.-------| moving A!|-'
|
||||
| '----------'
|
||||
| .-----' '-.
|
||||
| | v
|
||||
| | .--------.
|
||||
| | .->| dir B |
|
||||
| | | | pair 0 |
|
||||
| | | | |
|
||||
| | | '--------'
|
||||
| | .-------'
|
||||
| v v |
|
||||
| .--------. |
|
||||
'->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
|
||||
| update root to no longer contain directory A
|
||||
v
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.----| |-'
|
||||
| '--------'
|
||||
| |
|
||||
| v
|
||||
| .--------.
|
||||
| .->| dir B |
|
||||
| | | pair 0 |
|
||||
| '--| |-.
|
||||
| '--------' |
|
||||
| | |
|
||||
| v |
|
||||
| .--------. |
|
||||
'--->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
```
|
||||
|
||||
Now, if we run into a directory entry that has been marked as "moved", one
|
||||
of two things is possible. Either the directory entry exists elsewhere in the
|
||||
filesystem, or it doesn't. This is a O(n) operation, but only occurs in the
|
||||
unlikely case we lost power during a move.
|
||||
|
||||
And we can easily fix the "moved" directory entry. Since we're already scanning
|
||||
the filesystem during the deorphan step, we can also check for moved entries.
|
||||
If we find one, we either remove the "moved" marking or remove the whole entry
|
||||
if it exists elsewhere in the filesystem.
|
||||
It's also worth noting that once again we have an operation that isn't actually
|
||||
atomic. After we add directory A to directory B, we could lose power, leaving
|
||||
directory A as a part of both the root directory and directory B. However,
|
||||
there isn't anything inherent to the littlefs that prevents a directory from
|
||||
having multiple parents, so in this case, we just allow that to happen. Extra
|
||||
care is taken to only remove a directory from the linked-list if there are
|
||||
no parents left in the filesystem.
|
||||
|
||||
## Wear awareness
|
||||
|
||||
So now that we have all of the pieces of a filesystem, we can look at a more
|
||||
subtle attribute of embedded storage: The wear down of flash blocks.
|
||||
|
||||
The first concern for the littlefs, is that perfectly valid blocks can suddenly
|
||||
The first concern for the littlefs, is that prefectly valid blocks can suddenly
|
||||
become unusable. As a nice side-effect of using a COW data-structure for files,
|
||||
we can simply move on to a different block when a file write fails. All
|
||||
modifications to files are performed in copies, so we will only replace the
|
||||
@@ -1153,28 +906,23 @@ develops errors and needs to be moved.
|
||||
|
||||
## Wear leveling
|
||||
|
||||
The second concern for the littlefs is that blocks in the filesystem may wear
|
||||
The second concern for the littlefs, is that blocks in the filesystem may wear
|
||||
unevenly. In this situation, a filesystem may meet an early demise where
|
||||
there are no more non-corrupted blocks that aren't in use. It's common to
|
||||
have files that were written once and left unmodified, wasting the potential
|
||||
erase cycles of the blocks it sits on.
|
||||
there are no more non-corrupted blocks that aren't in use. It may be entirely
|
||||
possible that files were written once and left unmodified, wasting the
|
||||
potential erase cycles of the blocks it sits on.
|
||||
|
||||
Wear leveling is a term that describes distributing block writes evenly to
|
||||
avoid the early termination of a flash part. There are typically two levels
|
||||
of wear leveling:
|
||||
1. Dynamic wear leveling - Wear is distributed evenly across all **dynamic**
|
||||
blocks. Usually this is accomplished by simply choosing the unused block
|
||||
with the lowest amount of wear. Note this does not solve the problem of
|
||||
static data.
|
||||
2. Static wear leveling - Wear is distributed evenly across all **dynamic**
|
||||
and **static** blocks. Unmodified blocks may be evicted for new block
|
||||
writes. This does handle the problem of static data but may lead to
|
||||
wear amplification.
|
||||
1. Dynamic wear leveling - Blocks are distributed evenly during blocks writes.
|
||||
Note that the issue with write-once files still exists in this case.
|
||||
2. Static wear leveling - Unmodified blocks are evicted for new block writes.
|
||||
This provides the longest lifetime for a flash device.
|
||||
|
||||
In littlefs's case, it's possible to use the revision count on metadata pairs
|
||||
to approximate the wear of a metadata block. And combined with the COW nature
|
||||
of files, littlefs could provide your usual implementation of dynamic wear
|
||||
leveling.
|
||||
Now, it's possible to use the revision count on metadata pairs to approximate
|
||||
the wear of a metadata block. And combined with the COW nature of files, the
|
||||
littlefs could provide a form of dynamic wear leveling.
|
||||
|
||||
However, the littlefs does not. This is for a few reasons. Most notably, even
|
||||
if the littlefs did implement dynamic wear leveling, this would still not
|
||||
@@ -1185,20 +933,19 @@ As a flash device reaches the end of its life, the metadata blocks will
|
||||
naturally be the first to go since they are updated most often. In this
|
||||
situation, the littlefs is designed to simply move on to another set of
|
||||
metadata blocks. This travelling means that at the end of a flash device's
|
||||
life, the filesystem will have worn the device down nearly as evenly as the
|
||||
usual dynamic wear leveling could. More aggressive wear leveling would come
|
||||
with a code-size cost for marginal benefit.
|
||||
life, the filesystem will have worn the device down as evenly as a dynamic
|
||||
wear leveling filesystem could anyways. Simply put, if the lifetime of flash
|
||||
is a serious concern, static wear leveling is the only valid solution.
|
||||
|
||||
|
||||
One important takeaway to note, if your storage stack uses highly sensitive
|
||||
storage such as NAND flash, static wear leveling is the only valid solution.
|
||||
In most cases you are going to be better off using a full [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
|
||||
This is a very important takeaway to note. If your storage stack uses highly
|
||||
sensitive storage such as NAND flash. In most cases you are going to be better
|
||||
off just using a [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
|
||||
NAND flash already has many limitations that make it poorly suited for an
|
||||
embedded system: low erase cycles, very large blocks, errors that can develop
|
||||
even during reads, errors that can develop during writes of neighboring blocks.
|
||||
Managing sensitive storage such as NAND flash is out of scope for the littlefs.
|
||||
The littlefs does have some properties that may be beneficial on top of a FTL,
|
||||
such as limiting the number of writes where possible, but if you have the
|
||||
such as limiting the number of writes where possible. But if you have the
|
||||
storage requirements that necessitate the need of NAND flash, you should have
|
||||
the RAM to match and just use an FTL or flash filesystem.
|
||||
|
||||
@@ -1208,18 +955,18 @@ So, to summarize:
|
||||
|
||||
1. The littlefs is composed of directory blocks
|
||||
2. Each directory is a linked-list of metadata pairs
|
||||
3. These metadata pairs can be updated atomically by alternating which
|
||||
3. These metadata pairs can be updated atomically by alternative which
|
||||
metadata block is active
|
||||
4. Directory blocks contain either references to other directories or files
|
||||
5. Files are represented by copy-on-write CTZ skip-lists which support O(1)
|
||||
append and O(n log n) reading
|
||||
6. Blocks are allocated by scanning the filesystem for used blocks in a
|
||||
fixed-size lookahead region that is stored in a bit-vector
|
||||
7. To facilitate scanning the filesystem, all directories are part of a
|
||||
5. Files are represented by copy-on-write CTZ linked-lists
|
||||
6. The CTZ linked-lists support appending in O(1) and reading in O(n logn)
|
||||
7. Blocks are allocated by scanning the filesystem for used blocks in a
|
||||
fixed-size lookahead region is that stored in a bit-vector
|
||||
8. To facilitate scanning the filesystem, all directories are part of a
|
||||
linked-list that is threaded through the entire filesystem
|
||||
8. If a block develops an error, the littlefs allocates a new block, and
|
||||
9. If a block develops an error, the littlefs allocates a new block, and
|
||||
moves the data and references of the old block to the new.
|
||||
9. Any case where an atomic operation is not possible, mistakes are resolved
|
||||
10. Any case where an atomic operation is not possible, it is taken care of
|
||||
by a deorphan step that occurs on the first allocation after boot
|
||||
|
||||
That's the little filesystem. Thanks for reading!
|
||||
|
||||
183
LICENSE.md
183
LICENSE.md
@@ -1,24 +1,165 @@
|
||||
Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
- Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright notice, this
|
||||
list of conditions and the following disclaimer in the documentation and/or
|
||||
other materials provided with the distribution.
|
||||
- Neither the name of ARM nor the names of its contributors may be used to
|
||||
endorse or promote products derived from this software without specific prior
|
||||
written permission.
|
||||
1. Definitions.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
"License" shall mean the terms and conditions for use, reproduction, and
|
||||
distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by the copyright
|
||||
owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all other entities
|
||||
that control, are controlled by, or are under common control with that entity.
|
||||
For the purposes of this definition, "control" means (i) the power, direct or
|
||||
indirect, to cause the direction or management of such entity, whether by
|
||||
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity exercising
|
||||
permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications, including
|
||||
but not limited to software source code, documentation source, and configuration
|
||||
files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical transformation or
|
||||
translation of a Source form, including but not limited to compiled object code,
|
||||
generated documentation, and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or Object form, made
|
||||
available under the License, as indicated by a copyright notice that is included
|
||||
in or attached to the work (an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object form, that
|
||||
is based on (or derived from) the Work and for which the editorial revisions,
|
||||
annotations, elaborations, or other modifications represent, as a whole, an
|
||||
original work of authorship. For the purposes of this License, Derivative Works
|
||||
shall not include works that remain separable from, or merely link (or bind by
|
||||
name) to the interfaces of, the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including the original version
|
||||
of the Work and any modifications or additions to that Work or Derivative Works
|
||||
thereof, that is intentionally submitted to Licensor for inclusion in the Work
|
||||
by the copyright owner or by an individual or Legal Entity authorized to submit
|
||||
on behalf of the copyright owner. For the purposes of this definition,
|
||||
"submitted" means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems, and
|
||||
issue tracking systems that are managed by, or on behalf of, the Licensor for
|
||||
the purpose of discussing and improving the Work, but excluding communication
|
||||
that is conspicuously marked or otherwise designated in writing by the copyright
|
||||
owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
|
||||
of whom a Contribution has been received by Licensor and subsequently
|
||||
incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License.
|
||||
|
||||
Subject to the terms and conditions of this License, each Contributor hereby
|
||||
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
|
||||
irrevocable copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the Work and such
|
||||
Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License.
|
||||
|
||||
Subject to the terms and conditions of this License, each Contributor hereby
|
||||
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
|
||||
irrevocable (except as stated in this section) patent license to make, have
|
||||
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
|
||||
such license applies only to those patent claims licensable by such Contributor
|
||||
that are necessarily infringed by their Contribution(s) alone or by combination
|
||||
of their Contribution(s) with the Work to which such Contribution(s) was
|
||||
submitted. If You institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
|
||||
Contribution incorporated within the Work constitutes direct or contributory
|
||||
patent infringement, then any patent licenses granted to You under this License
|
||||
for that Work shall terminate as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution.
|
||||
|
||||
You may reproduce and distribute copies of the Work or Derivative Works thereof
|
||||
in any medium, with or without modifications, and in Source or Object form,
|
||||
provided that You meet the following conditions:
|
||||
|
||||
You must give any other recipients of the Work or Derivative Works a copy of
|
||||
this License; and
|
||||
You must cause any modified files to carry prominent notices stating that You
|
||||
changed the files; and
|
||||
You must retain, in the Source form of any Derivative Works that You distribute,
|
||||
all copyright, patent, trademark, and attribution notices from the Source form
|
||||
of the Work, excluding those notices that do not pertain to any part of the
|
||||
Derivative Works; and
|
||||
If the Work includes a "NOTICE" text file as part of its distribution, then any
|
||||
Derivative Works that You distribute must include a readable copy of the
|
||||
attribution notices contained within such NOTICE file, excluding those notices
|
||||
that do not pertain to any part of the Derivative Works, in at least one of the
|
||||
following places: within a NOTICE text file distributed as part of the
|
||||
Derivative Works; within the Source form or documentation, if provided along
|
||||
with the Derivative Works; or, within a display generated by the Derivative
|
||||
Works, if and wherever such third-party notices normally appear. The contents of
|
||||
the NOTICE file are for informational purposes only and do not modify the
|
||||
License. You may add Your own attribution notices within Derivative Works that
|
||||
You distribute, alongside or as an addendum to the NOTICE text from the Work,
|
||||
provided that such additional attribution notices cannot be construed as
|
||||
modifying the License.
|
||||
You may add Your own copyright statement to Your modifications and may provide
|
||||
additional or different license terms and conditions for use, reproduction, or
|
||||
distribution of Your modifications, or for any such Derivative Works as a whole,
|
||||
provided Your use, reproduction, and distribution of the Work otherwise complies
|
||||
with the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions.
|
||||
|
||||
Unless You explicitly state otherwise, any Contribution intentionally submitted
|
||||
for inclusion in the Work by You to the Licensor shall be under the terms and
|
||||
conditions of this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify the terms of
|
||||
any separate license agreement you may have executed with Licensor regarding
|
||||
such Contributions.
|
||||
|
||||
6. Trademarks.
|
||||
|
||||
This License does not grant permission to use the trade names, trademarks,
|
||||
service marks, or product names of the Licensor, except as required for
|
||||
reasonable and customary use in describing the origin of the Work and
|
||||
reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, Licensor provides the
|
||||
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
|
||||
including, without limitation, any warranties or conditions of TITLE,
|
||||
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
|
||||
solely responsible for determining the appropriateness of using or
|
||||
redistributing the Work and assume any risks associated with Your exercise of
|
||||
permissions under this License.
|
||||
|
||||
8. Limitation of Liability.
|
||||
|
||||
In no event and under no legal theory, whether in tort (including negligence),
|
||||
contract, or otherwise, unless required by applicable law (such as deliberate
|
||||
and grossly negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special, incidental,
|
||||
or consequential damages of any character arising as a result of this License or
|
||||
out of the use or inability to use the Work (including but not limited to
|
||||
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
|
||||
any and all other commercial damages or losses), even if such Contributor has
|
||||
been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability.
|
||||
|
||||
While redistributing the Work or Derivative Works thereof, You may choose to
|
||||
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
|
||||
other liability obligations and/or rights consistent with this License. However,
|
||||
in accepting such obligations, You may act only on Your own behalf and on Your
|
||||
sole responsibility, not on behalf of any other Contributor, and only if You
|
||||
agree to indemnify, defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason of your
|
||||
accepting any such warranty or additional liability.
|
||||
|
||||
35
Makefile
35
Makefile
@@ -1,11 +1,8 @@
|
||||
TARGET = lfs.a
|
||||
ifneq ($(wildcard test.c main.c),)
|
||||
override TARGET = lfs
|
||||
endif
|
||||
TARGET = lfs
|
||||
|
||||
CC ?= gcc
|
||||
AR ?= ar
|
||||
SIZE ?= size
|
||||
CC = gcc
|
||||
AR = ar
|
||||
SIZE = size
|
||||
|
||||
SRC += $(wildcard *.c emubd/*.c)
|
||||
OBJ := $(SRC:.c=.o)
|
||||
@@ -14,18 +11,16 @@ ASM := $(SRC:.c=.s)
|
||||
|
||||
TEST := $(patsubst tests/%.sh,%,$(wildcard tests/test_*))
|
||||
|
||||
SHELL = /bin/bash -o pipefail
|
||||
|
||||
ifdef DEBUG
|
||||
override CFLAGS += -O0 -g3
|
||||
CFLAGS += -O0 -g3
|
||||
else
|
||||
override CFLAGS += -Os
|
||||
CFLAGS += -Os
|
||||
endif
|
||||
ifdef WORD
|
||||
override CFLAGS += -m$(WORD)
|
||||
CFLAGS += -m$(WORD)
|
||||
endif
|
||||
override CFLAGS += -I.
|
||||
override CFLAGS += -std=c99 -Wall -pedantic -Wshadow -Wunused-parameter
|
||||
CFLAGS += -I.
|
||||
CFLAGS += -std=c99 -Wall -pedantic
|
||||
|
||||
|
||||
all: $(TARGET)
|
||||
@@ -36,20 +31,14 @@ size: $(OBJ)
|
||||
$(SIZE) -t $^
|
||||
|
||||
.SUFFIXES:
|
||||
test: test_format test_dirs test_files test_seek test_truncate \
|
||||
test_interspersed test_alloc test_paths test_orphan test_move test_corrupt
|
||||
@rm test.c
|
||||
test: test_format test_dirs test_files test_seek test_parallel \
|
||||
test_alloc test_paths test_orphan test_move test_corrupt
|
||||
test_%: tests/test_%.sh
|
||||
|
||||
ifdef QUIET
|
||||
@./$< | sed -n '/^[-=]/p'
|
||||
else
|
||||
./$<
|
||||
endif
|
||||
|
||||
-include $(DEP)
|
||||
|
||||
lfs: $(OBJ)
|
||||
$(TARGET): $(OBJ)
|
||||
$(CC) $(CFLAGS) $^ $(LFLAGS) -o $@
|
||||
|
||||
%.a: $(OBJ)
|
||||
|
||||
104
README.md
104
README.md
@@ -11,17 +11,23 @@ A little fail-safe filesystem designed for embedded systems.
|
||||
| | |
|
||||
```
|
||||
|
||||
**Bounded RAM/ROM** - The littlefs is designed to work with a limited amount
|
||||
of memory. Recursion is avoided and dynamic memory is limited to configurable
|
||||
buffers that can be provided statically.
|
||||
**Fail-safe** - The littlefs is designed to work consistently with random
|
||||
power failures. During filesystem operations the storage on disk is always
|
||||
kept in a valid state. The filesystem also has strong copy-on-write garuntees.
|
||||
When updating a file, the original file will remain unmodified until the
|
||||
file is closed, or sync is called.
|
||||
|
||||
**Power-loss resilient** - The littlefs is designed for systems that may have
|
||||
random power failures. The littlefs has strong copy-on-write guarantees and
|
||||
storage on disk is always kept in a valid state.
|
||||
**Wear awareness** - While the littlefs does not implement static wear
|
||||
leveling, the littlefs takes into account write errors reported by the
|
||||
underlying block device and uses a limited form of dynamic wear leveling
|
||||
to manage blocks that go bad during the lifetime of the filesystem.
|
||||
|
||||
**Wear leveling** - Since the most common form of embedded storage is erodible
|
||||
flash memories, littlefs provides a form of dynamic wear leveling for systems
|
||||
that can not fit a full flash translation layer.
|
||||
**Bounded ram/rom** - The littlefs is designed to work in a
|
||||
limited amount of memory, recursion is avoided, and dynamic memory is kept
|
||||
to a minimum. The littlefs allocates two fixed-size buffers for general
|
||||
operations, and one fixed-size buffer per file. If there is only ever one file
|
||||
in use, all memory can be provided statically and the littlefs can be used
|
||||
in a system without dynamic memory.
|
||||
|
||||
## Example
|
||||
|
||||
@@ -88,9 +94,9 @@ int main(void) {
|
||||
## Usage
|
||||
|
||||
Detailed documentation (or at least as much detail as is currently available)
|
||||
can be found in the comments in [lfs.h](lfs.h).
|
||||
can be cound in the comments in [lfs.h](lfs.h).
|
||||
|
||||
As you may have noticed, littlefs takes in a configuration structure that
|
||||
As you may have noticed, the littlefs takes in a configuration structure that
|
||||
defines how the filesystem operates. The configuration struct provides the
|
||||
filesystem with the block device operations and dimensions, tweakable
|
||||
parameters that tradeoff memory usage for performance, and optional
|
||||
@@ -98,16 +104,14 @@ static buffers if the user wants to avoid dynamic memory.
|
||||
|
||||
The state of the littlefs is stored in the `lfs_t` type which is left up
|
||||
to the user to allocate, allowing multiple filesystems to be in use
|
||||
simultaneously. With the `lfs_t` and configuration struct, a user can
|
||||
simultaneously. With the `lfs_t` and configuration struct, a user can either
|
||||
format a block device or mount the filesystem.
|
||||
|
||||
Once mounted, the littlefs provides a full set of POSIX-like file and
|
||||
Once mounted, the littlefs provides a full set of posix-like file and
|
||||
directory functions, with the deviation that the allocation of filesystem
|
||||
structures must be provided by the user.
|
||||
|
||||
All POSIX operations, such as remove and rename, are atomic, even in event
|
||||
of power-loss. Additionally, no file updates are actually committed to the
|
||||
filesystem until sync or close is called on the file.
|
||||
structures must be provided by the user. An important addition is that
|
||||
no file updates will actually be written to disk until a sync or close
|
||||
is called.
|
||||
|
||||
## Other notes
|
||||
|
||||
@@ -115,63 +119,27 @@ All littlefs have the potential to return a negative error code. The errors
|
||||
can be either one of those found in the `enum lfs_error` in [lfs.h](lfs.h),
|
||||
or an error returned by the user's block device operations.
|
||||
|
||||
In the configuration struct, the `prog` and `erase` function provided by the
|
||||
user may return a `LFS_ERR_CORRUPT` error if the implementation already can
|
||||
detect corrupt blocks. However, the wear leveling does not depend on the return
|
||||
code of these functions, instead all data is read back and checked for
|
||||
integrity.
|
||||
It should also be noted that the littlefs does not do anything to insure
|
||||
that the data written to disk is machine portable. It should be fine as
|
||||
long as the machines involved share endianness and don't have really
|
||||
strange padding requirements. If the question does come up, the littlefs
|
||||
metadata should be stored on disk in little-endian format.
|
||||
|
||||
If your storage caches writes, make sure that the provided `sync` function
|
||||
flushes all the data to memory and ensures that the next read fetches the data
|
||||
from memory, otherwise data integrity can not be guaranteed. If the `write`
|
||||
function does not perform caching, and therefore each `read` or `write` call
|
||||
hits the memory, the `sync` function can simply return 0.
|
||||
## Design
|
||||
|
||||
## Reference material
|
||||
|
||||
[DESIGN.md](DESIGN.md) - DESIGN.md contains a fully detailed dive into how
|
||||
littlefs actually works. I would encourage you to read it since the
|
||||
solutions and tradeoffs at work here are quite interesting.
|
||||
|
||||
[SPEC.md](SPEC.md) - SPEC.md contains the on-disk specification of littlefs
|
||||
with all the nitty-gritty details. Can be useful for developing tooling.
|
||||
the littlefs was developed with the goal of learning more about filesystem
|
||||
design by tackling the relative unsolved problem of managing a robust
|
||||
filesystem resilient to power loss on devices with limited RAM and ROM.
|
||||
More detail on the solutions and tradeoffs incorporated into this filesystem
|
||||
can be found in [DESIGN.md](DESIGN.md). The specification for the layout
|
||||
of the filesystem on disk can be found in [SPEC.md](SPEC.md).
|
||||
|
||||
## Testing
|
||||
|
||||
The littlefs comes with a test suite designed to run on a PC using the
|
||||
The littlefs comes with a test suite designed to run on a pc using the
|
||||
[emulated block device](emubd/lfs_emubd.h) found in the emubd directory.
|
||||
The tests assume a Linux environment and can be started with make:
|
||||
The tests assume a linux environment and can be started with make:
|
||||
|
||||
``` bash
|
||||
make test
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
The littlefs is provided under the [BSD-3-Clause](https://spdx.org/licenses/BSD-3-Clause.html)
|
||||
license. See [LICENSE.md](LICENSE.md) for more information. Contributions to
|
||||
this project are accepted under the same license.
|
||||
|
||||
Individual files contain the following tag instead of the full license text.
|
||||
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
|
||||
This enables machine processing of license information based on the SPDX
|
||||
License Identifiers that are here available: http://spdx.org/licenses/
|
||||
|
||||
## Related projects
|
||||
|
||||
[Mbed OS](https://github.com/ARMmbed/mbed-os/tree/master/features/filesystem/littlefs) -
|
||||
The easiest way to get started with littlefs is to jump into [Mbed](https://os.mbed.com/),
|
||||
which already has block device drivers for most forms of embedded storage. The
|
||||
littlefs is available in Mbed OS as the [LittleFileSystem](https://os.mbed.com/docs/latest/reference/littlefilesystem.html)
|
||||
class.
|
||||
|
||||
[littlefs-fuse](https://github.com/geky/littlefs-fuse) - A [FUSE](https://github.com/libfuse/libfuse)
|
||||
wrapper for littlefs. The project allows you to mount littlefs directly on a
|
||||
Linux machine. Can be useful for debugging littlefs if you have an SD card
|
||||
handy.
|
||||
|
||||
[littlefs-js](https://github.com/geky/littlefs-js) - A javascript wrapper for
|
||||
littlefs. I'm not sure why you would want this, but it is handy for demos.
|
||||
You can see it in action [here](http://littlefs.geky.net/demo.html).
|
||||
|
||||
45
SPEC.md
45
SPEC.md
@@ -46,7 +46,7 @@ Here's the layout of metadata blocks on disk:
|
||||
| 0x04 | 32 bits | dir size |
|
||||
| 0x08 | 64 bits | tail pointer |
|
||||
| 0x10 | size-16 bytes | dir entries |
|
||||
| 0x00+s | 32 bits | CRC |
|
||||
| 0x00+s | 32 bits | crc |
|
||||
|
||||
**Revision count** - Incremented every update, only the uncorrupted
|
||||
metadata-block with the most recent revision count contains the valid metadata.
|
||||
@@ -75,7 +75,7 @@ Here's an example of a simple directory stored on disk:
|
||||
(32 bits) revision count = 10 (0x0000000a)
|
||||
(32 bits) dir size = 154 bytes, end of dir (0x0000009a)
|
||||
(64 bits) tail pointer = 37, 36 (0x00000025, 0x00000024)
|
||||
(32 bits) CRC = 0xc86e3106
|
||||
(32 bits) crc = 0xc86e3106
|
||||
|
||||
00000000: 0a 00 00 00 9a 00 00 00 25 00 00 00 24 00 00 00 ........%...$...
|
||||
00000010: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 22 "...........tea"
|
||||
@@ -121,29 +121,24 @@ Here's the layout of entries on disk:
|
||||
**Entry type** - Type of the entry, currently this is limited to the following:
|
||||
- 0x11 - file entry
|
||||
- 0x22 - directory entry
|
||||
- 0x2e - superblock entry
|
||||
- 0xe2 - superblock entry
|
||||
|
||||
Additionally, the type is broken into two 4 bit nibbles, with the upper nibble
|
||||
Additionally, the type is broken into two 4 bit nibbles, with the lower nibble
|
||||
specifying the type's data structure used when scanning the filesystem. The
|
||||
lower nibble clarifies the type further when multiple entries share the same
|
||||
upper nibble clarifies the type further when multiple entries share the same
|
||||
data structure.
|
||||
|
||||
The highest bit is reserved for marking the entry as "moved". If an entry
|
||||
is marked as "moved", the entry may also exist somewhere else in the
|
||||
filesystem. If the entry exists elsewhere, this entry must be treated as
|
||||
though it does not exist.
|
||||
|
||||
**Entry length** - Length in bytes of the entry-specific data. This does
|
||||
not include the entry type size, attributes, or name. The full size in bytes
|
||||
of the entry is 4 + entry length + attribute length + name length.
|
||||
|
||||
**Attribute length** - Length of system-specific attributes in bytes. Since
|
||||
attributes are system specific, there is not much guarantee on the values in
|
||||
attributes are system specific, there is not much garuntee on the values in
|
||||
this section, and systems are expected to work even when it is empty. See the
|
||||
[attributes](#entry-attributes) section for more details.
|
||||
|
||||
**Name length** - Length of the entry name. Entry names are stored as UTF8,
|
||||
although most systems will probably only support ASCII. Entry names can not
|
||||
**Name length** - Length of the entry name. Entry names are stored as utf8,
|
||||
although most systems will probably only support ascii. Entry names can not
|
||||
contain '/' and can not be '.' or '..' as these are a part of the syntax of
|
||||
filesystem paths.
|
||||
|
||||
@@ -180,7 +175,7 @@ Here's the layout of the superblock entry:
|
||||
|
||||
| offset | size | description |
|
||||
|--------|------------------------|----------------------------------------|
|
||||
| 0x00 | 8 bits | entry type (0x2e for superblock entry) |
|
||||
| 0x00 | 8 bits | entry type (0xe2 for superblock entry) |
|
||||
| 0x01 | 8 bits | entry length (20 bytes) |
|
||||
| 0x02 | 8 bits | attribute length |
|
||||
| 0x03 | 8 bits | name length (8 bytes) |
|
||||
@@ -213,7 +208,7 @@ Here's an example of a complete superblock:
|
||||
(32 bits) revision count = 3 (0x00000003)
|
||||
(32 bits) dir size = 52 bytes, end of dir (0x00000034)
|
||||
(64 bits) tail pointer = 3, 2 (0x00000003, 0x00000002)
|
||||
(8 bits) entry type = superblock (0x2e)
|
||||
(8 bits) entry type = superblock (0xe2)
|
||||
(8 bits) entry length = 20 bytes (0x14)
|
||||
(8 bits) attribute length = 0 bytes (0x00)
|
||||
(8 bits) name length = 8 bytes (0x08)
|
||||
@@ -222,10 +217,10 @@ Here's an example of a complete superblock:
|
||||
(32 bits) block count = 1024 blocks (0x00000400)
|
||||
(32 bits) version = 1.1 (0x00010001)
|
||||
(8 bytes) magic string = littlefs
|
||||
(32 bits) CRC = 0xc50b74fa
|
||||
(32 bits) crc = 0xc50b74fa
|
||||
|
||||
00000000: 03 00 00 00 34 00 00 00 03 00 00 00 02 00 00 00 ....4...........
|
||||
00000010: 2e 14 00 08 03 00 00 00 02 00 00 00 00 02 00 00 ................
|
||||
00000010: e2 14 00 08 03 00 00 00 02 00 00 00 00 02 00 00 ................
|
||||
00000020: 00 04 00 00 01 00 01 00 6c 69 74 74 6c 65 66 73 ........littlefs
|
||||
00000030: fa 74 0b c5 .t..
|
||||
```
|
||||
@@ -267,19 +262,15 @@ Here's an example of a directory entry:
|
||||
|
||||
Files are stored in entries with a pointer to the head of the file and the
|
||||
size of the file. This is enough information to determine the state of the
|
||||
CTZ skip-list that is being referenced.
|
||||
CTZ linked-list that is being referenced.
|
||||
|
||||
How files are actually stored on disk is a bit complicated. The full
|
||||
explanation of CTZ skip-lists can be found in [DESIGN.md](DESIGN.md#ctz-skip-lists).
|
||||
explanation of CTZ linked-lists can be found in [DESIGN.md](DESIGN.md#ctz-linked-lists).
|
||||
|
||||
A terribly quick summary: For every nth block where n is divisible by 2^x,
|
||||
the block contains a pointer to block n-2^x. These pointers are stored in
|
||||
increasing order of x in each block of the file preceding the data in the
|
||||
block.
|
||||
|
||||
The maximum number of pointers in a block is bounded by the maximum file size
|
||||
divided by the block size. With 32 bits for file size, this results in a
|
||||
minimum block size of 104 bytes.
|
||||
the block contains a pointer that points x blocks towards the beginning of the
|
||||
file. These pointers are stored in order of x in each block of the file
|
||||
immediately before the data in the block.
|
||||
|
||||
Here's the layout of a file entry:
|
||||
|
||||
@@ -295,7 +286,7 @@ Here's the layout of a file entry:
|
||||
| 0xc+a | name length bytes | directory name |
|
||||
|
||||
**File head** - Pointer to the block that is the head of the file's CTZ
|
||||
skip-list.
|
||||
linked-list.
|
||||
|
||||
**File size** - Size of file in bytes.
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#include "emubd/lfs_emubd.h"
|
||||
|
||||
@@ -16,7 +16,6 @@
|
||||
#include <unistd.h>
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
|
||||
// Block device emulated on existing filesystem
|
||||
@@ -86,7 +85,7 @@ int lfs_emubd_read(const struct lfs_config *cfg, lfs_block_t block,
|
||||
memset(data, 0, size);
|
||||
|
||||
// Read data
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%" PRIx32, block);
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
|
||||
FILE *f = fopen(emu->path, "rb");
|
||||
if (!f && errno != ENOENT) {
|
||||
@@ -125,11 +124,11 @@ int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
|
||||
assert(block < cfg->block_count);
|
||||
|
||||
// Program data
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%" PRIx32, block);
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
|
||||
FILE *f = fopen(emu->path, "r+b");
|
||||
if (!f) {
|
||||
return (errno == EACCES) ? 0 : -errno;
|
||||
if (!f && errno != ENOENT) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
// Check that file was erased
|
||||
@@ -172,21 +171,21 @@ int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block) {
|
||||
assert(block < cfg->block_count);
|
||||
|
||||
// Erase the block
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%" PRIx32, block);
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
struct stat st;
|
||||
int err = stat(emu->path, &st);
|
||||
if (err && errno != ENOENT) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
if (!err && S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode)) {
|
||||
err = unlink(emu->path);
|
||||
if (!err && S_ISREG(st.st_mode)) {
|
||||
int err = unlink(emu->path);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || (S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode))) {
|
||||
if (err || S_ISREG(st.st_mode)) {
|
||||
FILE *f = fopen(emu->path, "w");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
@@ -240,3 +239,4 @@ int lfs_emubd_sync(const struct lfs_config *cfg) {
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_EMUBD_H
|
||||
#define LFS_EMUBD_H
|
||||
@@ -10,11 +10,6 @@
|
||||
#include "lfs.h"
|
||||
#include "lfs_util.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
// Config options
|
||||
#ifndef LFS_EMUBD_READ_SIZE
|
||||
@@ -80,8 +75,4 @@ int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block);
|
||||
int lfs_emubd_sync(const struct lfs_config *cfg);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
114
lfs.h
114
lfs.h
@@ -1,8 +1,8 @@
|
||||
/*
|
||||
* The little filesystem
|
||||
*
|
||||
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_H
|
||||
#define LFS_H
|
||||
@@ -10,28 +10,6 @@
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
/// Version info ///
|
||||
|
||||
// Software library version
|
||||
// Major (top-nibble), incremented on backwards incompatible changes
|
||||
// Minor (bottom-nibble), incremented on feature additions
|
||||
#define LFS_VERSION 0x00010005
|
||||
#define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
|
||||
#define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >> 0))
|
||||
|
||||
// Version of On-disk data structures
|
||||
// Major (top-nibble), incremented on backwards incompatible changes
|
||||
// Minor (bottom-nibble), incremented on feature additions
|
||||
#define LFS_DISK_VERSION 0x00010001
|
||||
#define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
|
||||
#define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >> 0))
|
||||
|
||||
|
||||
/// Definitions ///
|
||||
|
||||
@@ -52,18 +30,16 @@ typedef uint32_t lfs_block_t;
|
||||
// Possible error codes, these are negative to allow
|
||||
// valid positive return values
|
||||
enum lfs_error {
|
||||
LFS_ERR_OK = 0, // No error
|
||||
LFS_ERR_IO = -5, // Error during device operation
|
||||
LFS_ERR_CORRUPT = -52, // Corrupted
|
||||
LFS_ERR_NOENT = -2, // No directory entry
|
||||
LFS_ERR_EXIST = -17, // Entry already exists
|
||||
LFS_ERR_NOTDIR = -20, // Entry is not a dir
|
||||
LFS_ERR_ISDIR = -21, // Entry is a dir
|
||||
LFS_ERR_NOTEMPTY = -39, // Dir is not empty
|
||||
LFS_ERR_BADF = -9, // Bad file number
|
||||
LFS_ERR_INVAL = -22, // Invalid parameter
|
||||
LFS_ERR_NOSPC = -28, // No space left on device
|
||||
LFS_ERR_NOMEM = -12, // No more memory available
|
||||
LFS_ERR_OK = 0, // No error
|
||||
LFS_ERR_IO = -5, // Error during device operation
|
||||
LFS_ERR_CORRUPT = -52, // Corrupted
|
||||
LFS_ERR_NOENT = -2, // No directory entry
|
||||
LFS_ERR_EXISTS = -17, // Entry already exists
|
||||
LFS_ERR_NOTDIR = -20, // Entry is not a dir
|
||||
LFS_ERR_ISDIR = -21, // Entry is a dir
|
||||
LFS_ERR_INVAL = -22, // Invalid parameter
|
||||
LFS_ERR_NOSPC = -28, // No space left on device
|
||||
LFS_ERR_NOMEM = -12, // No more memory available
|
||||
};
|
||||
|
||||
// File types
|
||||
@@ -88,7 +64,6 @@ enum lfs_open_flags {
|
||||
LFS_F_DIRTY = 0x10000, // File does not match storage
|
||||
LFS_F_WRITING = 0x20000, // File has been written since last flush
|
||||
LFS_F_READING = 0x40000, // File has been read since last flush
|
||||
LFS_F_ERRED = 0x80000, // An error occured during write
|
||||
};
|
||||
|
||||
// File seek flags
|
||||
@@ -112,14 +87,14 @@ struct lfs_config {
|
||||
|
||||
// Program a region in a block. The block must have previously
|
||||
// been erased. Negative error codes are propogated to the user.
|
||||
// May return LFS_ERR_CORRUPT if the block should be considered bad.
|
||||
// The prog function must return LFS_ERR_CORRUPT if the block should
|
||||
// be considered bad.
|
||||
int (*prog)(const struct lfs_config *c, lfs_block_t block,
|
||||
lfs_off_t off, const void *buffer, lfs_size_t size);
|
||||
|
||||
// Erase a block. A block must be erased before being programmed.
|
||||
// The state of an erased block is undefined. Negative error codes
|
||||
// are propogated to the user.
|
||||
// May return LFS_ERR_CORRUPT if the block should be considered bad.
|
||||
int (*erase)(const struct lfs_config *c, lfs_block_t block);
|
||||
|
||||
// Sync the state of the underlying block device. Negative error codes
|
||||
@@ -134,13 +109,11 @@ struct lfs_config {
|
||||
// Minimum size of a block program. This determines the size of program
|
||||
// buffers. This may be larger than the physical program size to improve
|
||||
// performance by caching more of the block device.
|
||||
// Must be a multiple of the read size.
|
||||
lfs_size_t prog_size;
|
||||
|
||||
// Size of an erasable block. This does not impact ram consumption and
|
||||
// may be larger than the physical erase size. However, this should be
|
||||
// kept small as each file currently takes up an entire block.
|
||||
// Must be a multiple of the program size.
|
||||
// kept small as each file currently takes up an entire block .
|
||||
lfs_size_t block_size;
|
||||
|
||||
// Number of erasable blocks on the device.
|
||||
@@ -167,12 +140,6 @@ struct lfs_config {
|
||||
void *file_buffer;
|
||||
};
|
||||
|
||||
// Optional configuration provided during lfs_file_opencfg
|
||||
struct lfs_file_config {
|
||||
// Optional, statically allocated buffer for files. Must be program sized.
|
||||
// If NULL, malloc will be used by default.
|
||||
void *buffer;
|
||||
};
|
||||
|
||||
// File info structure
|
||||
struct lfs_info {
|
||||
@@ -220,7 +187,6 @@ typedef struct lfs_file {
|
||||
lfs_block_t head;
|
||||
lfs_size_t size;
|
||||
|
||||
const struct lfs_file_config *cfg;
|
||||
uint32_t flags;
|
||||
lfs_off_t pos;
|
||||
lfs_block_t block;
|
||||
@@ -229,7 +195,6 @@ typedef struct lfs_file {
|
||||
} lfs_file_t;
|
||||
|
||||
typedef struct lfs_dir {
|
||||
struct lfs_dir *next;
|
||||
lfs_block_t pair[2];
|
||||
lfs_off_t off;
|
||||
|
||||
@@ -260,10 +225,10 @@ typedef struct lfs_superblock {
|
||||
} lfs_superblock_t;
|
||||
|
||||
typedef struct lfs_free {
|
||||
lfs_size_t lookahead;
|
||||
lfs_block_t begin;
|
||||
lfs_block_t end;
|
||||
lfs_block_t off;
|
||||
lfs_block_t size;
|
||||
lfs_block_t i;
|
||||
lfs_block_t ack;
|
||||
uint32_t *buffer;
|
||||
} lfs_free_t;
|
||||
|
||||
@@ -273,13 +238,13 @@ typedef struct lfs {
|
||||
|
||||
lfs_block_t root[2];
|
||||
lfs_file_t *files;
|
||||
lfs_dir_t *dirs;
|
||||
|
||||
lfs_cache_t rcache;
|
||||
lfs_cache_t pcache;
|
||||
|
||||
lfs_free_t free;
|
||||
bool deorphaned;
|
||||
uint8_t unstable;
|
||||
uint8_t sum;
|
||||
} lfs_t;
|
||||
|
||||
|
||||
@@ -288,8 +253,7 @@ typedef struct lfs {
|
||||
// Format a block device with the littlefs
|
||||
//
|
||||
// Requires a littlefs object and config struct. This clobbers the littlefs
|
||||
// object, and does not leave the filesystem mounted. The config struct must
|
||||
// be zeroed for defaults and backwards compatibility.
|
||||
// object, and does not leave the filesystem mounted.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_format(lfs_t *lfs, const struct lfs_config *config);
|
||||
@@ -298,8 +262,7 @@ int lfs_format(lfs_t *lfs, const struct lfs_config *config);
|
||||
//
|
||||
// Requires a littlefs object and config struct. Multiple filesystems
|
||||
// may be mounted simultaneously with multiple littlefs objects. Both
|
||||
// lfs and config must be allocated while mounted. The config struct must
|
||||
// be zeroed for defaults and backwards compatibility.
|
||||
// lfs and config must be allocated while mounted.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
|
||||
@@ -323,6 +286,10 @@ int lfs_remove(lfs_t *lfs, const char *path);
|
||||
// If the destination exists, it must match the source in type.
|
||||
// If the destination is a directory, the directory must be empty.
|
||||
//
|
||||
// Note: If power loss occurs, it is possible that the file or directory
|
||||
// will exist in both the oldpath and newpath simultaneously after the
|
||||
// next mount.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
|
||||
|
||||
@@ -337,27 +304,14 @@ int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
|
||||
|
||||
// Open a file
|
||||
//
|
||||
// The mode that the file is opened in is determined by the flags, which
|
||||
// are values from the enum lfs_open_flags that are bitwise-ored together.
|
||||
// The mode that the file is opened in is determined
|
||||
// by the flags, which are values from the enum lfs_open_flags
|
||||
// that are bitwise-ored together.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
|
||||
const char *path, int flags);
|
||||
|
||||
// Open a file with extra configuration
|
||||
//
|
||||
// The mode that the file is opened in is determined by the flags, which
|
||||
// are values from the enum lfs_open_flags that are bitwise-ored together.
|
||||
//
|
||||
// The config struct provides additional config options per file as described
|
||||
// above. The config struct must be allocated while the file is open, and the
|
||||
// config struct must be zeroed for defaults and backwards compatibility.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
|
||||
const char *path, int flags,
|
||||
const struct lfs_file_config *config);
|
||||
|
||||
// Close a file
|
||||
//
|
||||
// Any pending writes are written out to storage as though
|
||||
@@ -395,11 +349,6 @@ lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
|
||||
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
|
||||
lfs_soff_t off, int whence);
|
||||
|
||||
// Truncates the size of the file to the specified size
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
|
||||
|
||||
// Return the position of the file
|
||||
//
|
||||
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
|
||||
@@ -486,9 +435,8 @@ int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_deorphan(lfs_t *lfs);
|
||||
|
||||
// TODO doc
|
||||
int lfs_deduplicate(lfs_t *lfs);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
10
lfs_util.c
10
lfs_util.c
@@ -1,16 +1,12 @@
|
||||
/*
|
||||
* lfs util functions
|
||||
*
|
||||
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#include "lfs_util.h"
|
||||
|
||||
// Only compile if user does not provide custom config
|
||||
#ifndef LFS_CONFIG
|
||||
|
||||
|
||||
// Software CRC implementation with small lookup table
|
||||
void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
|
||||
static const uint32_t rtable[16] = {
|
||||
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
||||
@@ -27,5 +23,3 @@ void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
164
lfs_util.h
164
lfs_util.h
@@ -1,84 +1,19 @@
|
||||
/*
|
||||
* lfs utility functions
|
||||
*
|
||||
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_UTIL_H
|
||||
#define LFS_UTIL_H
|
||||
|
||||
// Users can override lfs_util.h with their own configuration by defining
|
||||
// LFS_CONFIG as a header file to include (-DLFS_CONFIG=lfs_config.h).
|
||||
//
|
||||
// If LFS_CONFIG is used, none of the default utils will be emitted and must be
|
||||
// provided by the config file. To start I would suggest copying lfs_util.h and
|
||||
// modifying as needed.
|
||||
#ifdef LFS_CONFIG
|
||||
#define LFS_STRINGIZE(x) LFS_STRINGIZE2(x)
|
||||
#define LFS_STRINGIZE2(x) #x
|
||||
#include LFS_STRINGIZE(LFS_CONFIG)
|
||||
#else
|
||||
|
||||
// System includes
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifndef LFS_NO_MALLOC
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
#ifndef LFS_NO_ASSERT
|
||||
#include <assert.h>
|
||||
#endif
|
||||
#if !defined(LFS_NO_DEBUG) || !defined(LFS_NO_WARN) || !defined(LFS_NO_ERROR)
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
|
||||
// Macros, may be replaced by system specific wrappers. Arguments to these
|
||||
// macros must not have side-effects as the macros can be removed for a smaller
|
||||
// code footprint
|
||||
|
||||
// Logging functions
|
||||
#ifndef LFS_NO_DEBUG
|
||||
#define LFS_DEBUG(fmt, ...) \
|
||||
printf("lfs debug:%d: " fmt "\n", __LINE__, __VA_ARGS__)
|
||||
#else
|
||||
#define LFS_DEBUG(fmt, ...)
|
||||
#endif
|
||||
|
||||
#ifndef LFS_NO_WARN
|
||||
#define LFS_WARN(fmt, ...) \
|
||||
printf("lfs warn:%d: " fmt "\n", __LINE__, __VA_ARGS__)
|
||||
#else
|
||||
#define LFS_WARN(fmt, ...)
|
||||
#endif
|
||||
|
||||
#ifndef LFS_NO_ERROR
|
||||
#define LFS_ERROR(fmt, ...) \
|
||||
printf("lfs error:%d: " fmt "\n", __LINE__, __VA_ARGS__)
|
||||
#else
|
||||
#define LFS_ERROR(fmt, ...)
|
||||
#endif
|
||||
|
||||
// Runtime assertions
|
||||
#ifndef LFS_NO_ASSERT
|
||||
#define LFS_ASSERT(test) assert(test)
|
||||
#else
|
||||
#define LFS_ASSERT(test)
|
||||
#endif
|
||||
|
||||
|
||||
// Builtin functions, these may be replaced by more efficient
|
||||
// toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more
|
||||
// expensive basic C implementation for debugging purposes
|
||||
|
||||
// Min/max functions for unsigned 32-bit numbers
|
||||
// Builtin functions, these may be replaced by more
|
||||
// efficient implementations in the system
|
||||
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
@@ -87,100 +22,27 @@ static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
|
||||
return (a < b) ? a : b;
|
||||
}
|
||||
|
||||
// Find the next smallest power of 2 less than or equal to a
|
||||
static inline uint32_t lfs_npw2(uint32_t a) {
|
||||
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
|
||||
return 32 - __builtin_clz(a-1);
|
||||
#else
|
||||
uint32_t r = 0;
|
||||
uint32_t s;
|
||||
a -= 1;
|
||||
s = (a > 0xffff) << 4; a >>= s; r |= s;
|
||||
s = (a > 0xff ) << 3; a >>= s; r |= s;
|
||||
s = (a > 0xf ) << 2; a >>= s; r |= s;
|
||||
s = (a > 0x3 ) << 1; a >>= s; r |= s;
|
||||
return (r | (a >> 1)) + 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Count the number of trailing binary zeros in a
|
||||
// lfs_ctz(0) may be undefined
|
||||
static inline uint32_t lfs_ctz(uint32_t a) {
|
||||
#if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__)
|
||||
return __builtin_ctz(a);
|
||||
#else
|
||||
return lfs_npw2((a & -a) + 1) - 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Count the number of binary ones in a
|
||||
static inline uint32_t lfs_popc(uint32_t a) {
|
||||
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
|
||||
return __builtin_popcount(a);
|
||||
#else
|
||||
a = a - ((a >> 1) & 0x55555555);
|
||||
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
|
||||
return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
|
||||
#endif
|
||||
static inline uint32_t lfs_npw2(uint32_t a) {
|
||||
return 32 - __builtin_clz(a-1);
|
||||
}
|
||||
|
||||
// Find the sequence comparison of a and b, this is the distance
|
||||
// between a and b ignoring overflow
|
||||
static inline int lfs_scmp(uint32_t a, uint32_t b) {
|
||||
return (int)(unsigned)(a - b);
|
||||
}
|
||||
|
||||
// Convert from 32-bit little-endian to native order
|
||||
static inline uint32_t lfs_fromle32(uint32_t a) {
|
||||
#if !defined(LFS_NO_INTRINSICS) && ( \
|
||||
(defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
|
||||
(defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
|
||||
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|
||||
return a;
|
||||
#elif !defined(LFS_NO_INTRINSICS) && ( \
|
||||
(defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
|
||||
(defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
|
||||
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
|
||||
return __builtin_bswap32(a);
|
||||
#else
|
||||
return (((uint8_t*)&a)[0] << 0) |
|
||||
(((uint8_t*)&a)[1] << 8) |
|
||||
(((uint8_t*)&a)[2] << 16) |
|
||||
(((uint8_t*)&a)[3] << 24);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Convert to 32-bit little-endian from native order
|
||||
static inline uint32_t lfs_tole32(uint32_t a) {
|
||||
return lfs_fromle32(a);
|
||||
}
|
||||
|
||||
// Calculate CRC-32 with polynomial = 0x04c11db7
|
||||
// CRC-32 with polynomial = 0x04c11db7
|
||||
void lfs_crc(uint32_t *crc, const void *buffer, size_t size);
|
||||
|
||||
// Allocate memory, only used if buffers are not provided to littlefs
|
||||
static inline void *lfs_malloc(size_t size) {
|
||||
#ifndef LFS_NO_MALLOC
|
||||
return malloc(size);
|
||||
#else
|
||||
(void)size;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Deallocate memory, only used if buffers are not provided to littlefs
|
||||
static inline void lfs_free(void *p) {
|
||||
#ifndef LFS_NO_MALLOC
|
||||
free(p);
|
||||
#else
|
||||
(void)p;
|
||||
#endif
|
||||
}
|
||||
// Logging functions, these may be replaced by system-specific
|
||||
// logging functions
|
||||
#define LFS_DEBUG(fmt, ...) printf("lfs debug: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_WARN(fmt, ...) printf("lfs warn: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_ERROR(fmt, ...) printf("lfs error: " fmt "\n", __VA_ARGS__)
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -7,11 +7,11 @@
|
||||
|
||||
|
||||
// test stuff
|
||||
static void test_log(const char *s, uintmax_t v) {{
|
||||
void test_log(const char *s, uintmax_t v) {{
|
||||
printf("%s: %jd\n", s, v);
|
||||
}}
|
||||
|
||||
static void test_assert(const char *file, unsigned line,
|
||||
void test_assert(const char *file, unsigned line,
|
||||
const char *s, uintmax_t v, uintmax_t e) {{
|
||||
static const char *last[6] = {{0, 0}};
|
||||
if (v != e || !(last[0] == s || last[1] == s ||
|
||||
@@ -37,8 +37,7 @@ static void test_assert(const char *file, unsigned line,
|
||||
|
||||
|
||||
// utility functions for traversals
|
||||
static int __attribute__((used)) test_count(void *p, lfs_block_t b) {{
|
||||
(void)b;
|
||||
int test_count(void *p, lfs_block_t b) {{
|
||||
unsigned *u = (unsigned*)p;
|
||||
*u += 1;
|
||||
return 0;
|
||||
@@ -59,7 +58,7 @@ lfs_size_t size;
|
||||
lfs_size_t wsize;
|
||||
lfs_size_t rsize;
|
||||
|
||||
uintmax_t test;
|
||||
uintmax_t res;
|
||||
|
||||
#ifndef LFS_READ_SIZE
|
||||
#define LFS_READ_SIZE 16
|
||||
@@ -97,7 +96,7 @@ const struct lfs_config cfg = {{
|
||||
|
||||
|
||||
// Entry point
|
||||
int main(void) {{
|
||||
int main() {{
|
||||
lfs_emubd_create(&cfg, "blocks");
|
||||
|
||||
{tests}
|
||||
|
||||
@@ -14,34 +14,22 @@ def generate(test):
|
||||
match = re.match('(?: *\n)*( *)(.*)=>(.*);', line, re.DOTALL | re.MULTILINE)
|
||||
if match:
|
||||
tab, test, expect = match.groups()
|
||||
lines.append(tab+'test = {test};'.format(test=test.strip()))
|
||||
lines.append(tab+'test_assert("{name}", test, {expect});'.format(
|
||||
lines.append(tab+'res = {test};'.format(test=test.strip()))
|
||||
lines.append(tab+'test_assert("{name}", res, {expect});'.format(
|
||||
name = re.match('\w*', test.strip()).group(),
|
||||
expect = expect.strip()))
|
||||
else:
|
||||
lines.append(line)
|
||||
|
||||
# Create test file
|
||||
with open('test.c', 'w') as file:
|
||||
file.write(template.format(tests='\n'.join(lines)))
|
||||
|
||||
# Remove build artifacts to force rebuild
|
||||
try:
|
||||
os.remove('test.o')
|
||||
os.remove('lfs')
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
def compile():
|
||||
subprocess.check_call([
|
||||
os.environ.get('MAKE', 'make'),
|
||||
'--no-print-directory', '-s'])
|
||||
os.environ['CFLAGS'] = os.environ.get('CFLAGS', '') + ' -Werror'
|
||||
subprocess.check_call(['make', '--no-print-directory', '-s'], env=os.environ)
|
||||
|
||||
def execute():
|
||||
if 'EXEC' in os.environ:
|
||||
subprocess.check_call([os.environ['EXEC'], "./lfs"])
|
||||
else:
|
||||
subprocess.check_call(["./lfs"])
|
||||
subprocess.check_call(["./lfs"])
|
||||
|
||||
def main(test=None):
|
||||
if test and not test.startswith('-'):
|
||||
|
||||
@@ -121,7 +121,6 @@ tests/test.py << TEST
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
@@ -143,7 +142,6 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_size(&lfs, &file[0]) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -168,7 +166,6 @@ tests/test.py << TEST
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
@@ -190,7 +187,6 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_size(&lfs, &file[0]) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -200,14 +196,14 @@ TEST
|
||||
echo "--- Dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-6)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
for (lfs_size_t i = 0; i < fullsize - 2*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -218,11 +214,7 @@ tests/test.py << TEST
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_APPEND);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => LFS_ERR_NOSPC;
|
||||
@@ -232,14 +224,14 @@ TEST
|
||||
echo "--- Chained dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-24)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
for (lfs_size_t i = 0; i < fullsize - 19*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -255,9 +247,7 @@ tests/test.py << TEST
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-26)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
for (lfs_size_t i = 0; i < fullsize - 20*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -266,163 +256,6 @@ tests/test.py << TEST
|
||||
lfs_mkdir(&lfs, "exhaustiondir2") => LFS_ERR_NOSPC;
|
||||
TEST
|
||||
|
||||
echo "--- Split dir test ---"
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
// create one block whole for half a directory
|
||||
lfs_file_open(&lfs, &file[0], "bump", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_write(&lfs, &file[0], (void*)"hi", 2) => 2;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-6)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
// open hole
|
||||
lfs_remove(&lfs, "bump") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "splitdir") => 0;
|
||||
lfs_file_open(&lfs, &file[0], "splitdir/bump",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => LFS_ERR_NOSPC;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Outdated lookahead test ---"
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
// fill completely with two files
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion1",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion2",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4+1)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
// remount to force reset of lookahead
|
||||
lfs_unmount(&lfs) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
// rewrite one file
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion1",
|
||||
LFS_O_WRONLY | LFS_O_TRUNC) => 0;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
// rewrite second file, this requires lookahead does not
|
||||
// use old population
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion2",
|
||||
LFS_O_WRONLY | LFS_O_TRUNC) => 0;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4+1)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Outdated lookahead and split dir test ---"
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
// fill completely with two files
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion1",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion2",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4+1)/2)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
// remount to force reset of lookahead
|
||||
lfs_unmount(&lfs) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
// rewrite one file with a hole of one block
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion1",
|
||||
LFS_O_WRONLY | LFS_O_TRUNC) => 0;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0;
|
||||
i < ((cfg.block_count-4)/2 - 1)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
// try to allocate a directory, should fail!
|
||||
lfs_mkdir(&lfs, "split") => LFS_ERR_NOSPC;
|
||||
|
||||
// file should not fail
|
||||
lfs_file_open(&lfs, &file[0], "notasplit",
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_write(&lfs, &file[0], "hi", 2) => 2;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
|
||||
@@ -82,17 +82,6 @@ do
|
||||
lfs_chktree
|
||||
done
|
||||
|
||||
echo "--- Block persistance ---"
|
||||
for i in {0..33}
|
||||
do
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
lfs_mktree
|
||||
chmod a-w blocks/$(printf '%x' $i)
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
done
|
||||
|
||||
echo "--- Big region corruption ---"
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
|
||||
@@ -56,7 +56,7 @@ TEST
|
||||
echo "--- Directory failures ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXIST;
|
||||
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXISTS;
|
||||
lfs_dir_open(&lfs, &dir[0], "tomato") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "burito") => LFS_ERR_NOTDIR;
|
||||
lfs_file_open(&lfs, &file[0], "tomato", LFS_O_RDONLY) => LFS_ERR_NOENT;
|
||||
@@ -118,7 +118,6 @@ tests/test.py << TEST
|
||||
sprintf((char*)buffer, "test%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
}
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
@@ -127,7 +126,7 @@ TEST
|
||||
echo "--- Directory remove ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "potato") => LFS_ERR_NOTEMPTY;
|
||||
lfs_remove(&lfs, "potato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "potato/sweet") => 0;
|
||||
lfs_remove(&lfs, "potato/baked") => 0;
|
||||
lfs_remove(&lfs, "potato/fried") => 0;
|
||||
@@ -221,7 +220,7 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "warmpotato") => 0;
|
||||
lfs_mkdir(&lfs, "warmpotato/mushy") => 0;
|
||||
lfs_rename(&lfs, "hotpotato", "warmpotato") => LFS_ERR_NOTEMPTY;
|
||||
lfs_rename(&lfs, "hotpotato", "warmpotato") => LFS_ERR_INVAL;
|
||||
|
||||
lfs_remove(&lfs, "warmpotato/mushy") => 0;
|
||||
lfs_rename(&lfs, "hotpotato", "warmpotato") => 0;
|
||||
@@ -256,7 +255,7 @@ tests/test.py << TEST
|
||||
lfs_rename(&lfs, "warmpotato/baked", "coldpotato/baked") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/sweet", "coldpotato/sweet") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/fried", "coldpotato/fried") => 0;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "warmpotato") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
@@ -283,53 +282,10 @@ tests/test.py << TEST
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Recursive remove ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "coldpotato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
|
||||
while (true) {
|
||||
int err = lfs_dir_read(&lfs, &dir[0], &info);
|
||||
err >= 0 => 1;
|
||||
if (err == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
strcpy((char*)buffer, "coldpotato/");
|
||||
strcat((char*)buffer, info.name);
|
||||
lfs_remove(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "coldpotato") => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "cactus") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Multi-block remove ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "cactus") => LFS_ERR_NOTEMPTY;
|
||||
lfs_remove(&lfs, "cactus") => LFS_ERR_INVAL;
|
||||
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "cactus/test%d", i);
|
||||
@@ -351,71 +307,9 @@ tests/test.py << TEST
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Multi-block directory with files ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "prickly-pear") => 0;
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "prickly-pear/test%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = 6;
|
||||
memcpy(wbuffer, "Hello", size);
|
||||
lfs_file_write(&lfs, &file[0], wbuffer, size) => size;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "prickly-pear") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
strcmp(info.name, "coldpotato") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "test%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 6;
|
||||
}
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Multi-block remove with files ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "prickly-pear") => LFS_ERR_NOTEMPTY;
|
||||
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "prickly-pear/test%d", i);
|
||||
lfs_remove(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "prickly-pear") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
|
||||
@@ -30,12 +30,11 @@ TEST
|
||||
|
||||
w_test() {
|
||||
tests/test.py << TEST
|
||||
size = $1;
|
||||
lfs_size_t size = $1;
|
||||
lfs_size_t chunk = 31;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2",
|
||||
${3:-LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC}) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
for (lfs_size_t b = 0; b < chunk; b++) {
|
||||
@@ -50,14 +49,11 @@ TEST
|
||||
|
||||
r_test() {
|
||||
tests/test.py << TEST
|
||||
size = $1;
|
||||
lfs_size_t size = $1;
|
||||
lfs_size_t chunk = 29;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "$2", &info) => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => size;
|
||||
lfs_file_open(&lfs, &file[0], "$2", ${3:-LFS_O_RDONLY}) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_RDONLY) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
lfs_file_read(&lfs, &file[0], buffer, chunk) => chunk;
|
||||
@@ -82,27 +78,10 @@ echo "--- Large file test ---"
|
||||
w_test $LARGESIZE largeavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
|
||||
echo "--- Zero file test ---"
|
||||
w_test 0 noavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Truncate small test ---"
|
||||
w_test $SMALLSIZE mediumavacado
|
||||
r_test $SMALLSIZE mediumavacado
|
||||
w_test $MEDIUMSIZE mediumavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
|
||||
echo "--- Truncate zero test ---"
|
||||
w_test $SMALLSIZE noavacado
|
||||
r_test $SMALLSIZE noavacado
|
||||
w_test 0 noavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Non-overlap check ---"
|
||||
r_test $SMALLSIZE smallavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Dir check ---"
|
||||
tests/test.py << TEST
|
||||
@@ -126,33 +105,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "largeavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => $LARGESIZE;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "noavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Many file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
// Create 300 files of 6 bytes
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "directory") => 0;
|
||||
for (unsigned i = 0; i < 300; i++) {
|
||||
snprintf((char*)buffer, sizeof(buffer), "file_%03d", i);
|
||||
lfs_file_open(&lfs, &file[0], (char*)buffer, LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = 6;
|
||||
memcpy(wbuffer, "Hello", size);
|
||||
lfs_file_write(&lfs, &file[0], wbuffer, size) => size;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Interspersed tests ==="
|
||||
echo "=== Parallel tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Interspersed file test ---"
|
||||
echo "--- Parallel file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "a", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
@@ -77,7 +77,7 @@ tests/test.py << TEST
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Interspersed remove file test ---"
|
||||
echo "--- Parallel remove file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "e", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
@@ -90,22 +90,6 @@ tests/test.py << TEST
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Trailing dot path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "tea/hottea/", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "tea/hottea/.", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "tea/hottea/./.", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "tea/hottea/..", &info) => 0;
|
||||
strcmp(info.name, "tea") => 0;
|
||||
lfs_stat(&lfs, "tea/hottea/../.", &info) => 0;
|
||||
strcmp(info.name, "tea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Root dot dot path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
@@ -124,10 +108,6 @@ tests/test.py << TEST
|
||||
lfs_stat(&lfs, "/", &info) => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
strcmp(info.name, "/") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "/") => LFS_ERR_EXIST;
|
||||
lfs_file_open(&lfs, &file[0], "/", LFS_O_WRONLY | LFS_O_CREAT)
|
||||
=> LFS_ERR_ISDIR;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
|
||||
@@ -133,14 +133,6 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
@@ -153,7 +145,7 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -182,14 +174,6 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
@@ -202,7 +186,7 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -243,7 +227,7 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -286,7 +270,7 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
@@ -1,158 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
SMALLSIZE=32
|
||||
MEDIUMSIZE=2048
|
||||
LARGESIZE=8192
|
||||
|
||||
echo "=== Truncate tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
truncate_test() {
|
||||
STARTSIZES="$1"
|
||||
STARTSEEKS="$2"
|
||||
HOTSIZES="$3"
|
||||
COLDSIZES="$4"
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t startseeks[] = {$STARTSEEKS};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC) => 0;
|
||||
|
||||
strcpy((char*)buffer, "hair");
|
||||
size = strlen((char*)buffer);
|
||||
for (int j = 0; j < startsizes[i]; j += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_size(&lfs, &file[0]) => startsizes[i];
|
||||
|
||||
if (startseeks[i] != startsizes[i]) {
|
||||
lfs_file_seek(&lfs, &file[0],
|
||||
startseeks[i], LFS_SEEK_SET) => startseeks[i];
|
||||
}
|
||||
|
||||
lfs_file_truncate(&lfs, &file[0], hotsizes[i]) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
static const lfs_off_t coldsizes[] = {$COLDSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDWR) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
|
||||
|
||||
size = strlen("hair");
|
||||
int j = 0;
|
||||
for (; j < startsizes[i] && j < hotsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "hair", size) => 0;
|
||||
}
|
||||
|
||||
for (; j < hotsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "\0\0\0\0", size) => 0;
|
||||
}
|
||||
|
||||
lfs_file_truncate(&lfs, &file[0], coldsizes[i]) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
static const lfs_off_t coldsizes[] = {$COLDSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDONLY) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
|
||||
|
||||
size = strlen("hair");
|
||||
int j = 0;
|
||||
for (; j < startsizes[i] && j < hotsizes[i] && j < coldsizes[i];
|
||||
j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "hair", size) => 0;
|
||||
}
|
||||
|
||||
for (; j < coldsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "\0\0\0\0", size) => 0;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
echo "--- Cold shrinking truncate ---"
|
||||
truncate_test \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Cold expanding truncate ---"
|
||||
truncate_test \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Warm shrinking truncate ---"
|
||||
truncate_test \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, 0, 0, 0, 0"
|
||||
|
||||
echo "--- Warm expanding truncate ---"
|
||||
truncate_test \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Mid-file shrinking truncate ---"
|
||||
truncate_test \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
" $LARGESIZE, $LARGESIZE, $LARGESIZE, $LARGESIZE, $LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, 0, 0, 0, 0"
|
||||
|
||||
echo "--- Mid-file expanding truncate ---"
|
||||
truncate_test \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
Reference in New Issue
Block a user