Compare commits

...

99 Commits

Author SHA1 Message Date
Christopher Haster
21ef0b7169 WIP added some comments 2018-04-03 09:37:14 -05:00
Christopher Haster
fec133dfba WIP Bumped versions 2018-04-03 08:38:25 -05:00
Christopher Haster
9b4530f8de WIP cleaned up TODOs 2018-04-03 08:29:28 -05:00
Christopher Haster
3a12b40fff WIP added support for inline files up to 1023 bytes 2018-04-03 08:28:09 -05:00
Christopher Haster
12aa4bde06 WIP Added limits on name/attrs/inline sizes 2018-04-01 15:36:29 -05:00
Christopher Haster
09c7df83db WIP Refactored lfs_dir_set function to umbrella append/update/remove 2018-03-27 22:49:21 -05:00
Christopher Haster
5387f52de5 WIP Added lfs_dir_get 2018-03-23 18:36:02 -05:00
Christopher Haster
c5b11d2a62 WIP moved superblock to entry append 2018-03-23 16:11:36 -05:00
Christopher Haster
66cdab8327 WIP fixed bugs 2018-03-23 05:29:18 -05:00
Christopher Haster
8aba03d25f WIP Fixed issue with modifying dir after append in update 2018-03-18 20:37:13 -05:00
Christopher Haster
9064fa6dbb WIP Better implementation of inline files, now with overflowing 2018-03-17 20:32:16 -05:00
Christopher Haster
fcc5c764e4 WIP moved asserts out 2018-03-17 12:10:09 -05:00
Christopher Haster
37f799d8a2 WIP added hacky taped on inline files 2018-03-17 10:29:41 -05:00
Christopher Haster
04b1103de1 WIP Fixed big-endian support 2018-03-15 23:25:21 -05:00
Christopher Haster
87df75d009 WIP added entry size field 2018-03-15 23:25:09 -05:00
Christopher Haster
1ea3d04d9c WIP separated dir_remove for two types of arguments 2018-03-15 23:24:50 -05:00
Christopher Haster
126f6d334e WIP minor improvement to from-memory commits 2018-03-12 22:29:21 -05:00
Christopher Haster
385b74944d WIP Allowed taking advantage of empty space earlier in dir search 2018-03-12 22:29:21 -05:00
Christopher Haster
3a10f5c29b WIP added callbacks for stuff 2018-03-12 22:29:21 -05:00
Christopher Haster
96cca2f5b6 WIP Moved entry tag updates out 2018-03-12 22:29:21 -05:00
Christopher Haster
32f43462ea WIP Naive implementation of resizable entries 2018-03-12 22:29:21 -05:00
Christopher Haster
efc634f3ed WIP something something flexible updates 2018-03-12 22:29:21 -05:00
Christopher Haster
2f7adc3461 WIP adopted lisp-like dsl for more flexibility 2018-03-12 22:29:21 -05:00
Christopher Haster
e934a22c3a WIP Changed commit DSL to support disk->disk copies 2018-03-12 22:29:21 -05:00
Christopher Haster
5937fd79dd Separated type/struct fields in dir entries
The separation of data-structure vs entry type has been implicit for a
while now, and even taken advantage of to simplify the traverse logic.
2018-03-12 22:29:21 -05:00
Christopher Haster
58f3bb1f08 Merge pull request #37 from jrast/patch-1
Added a note about the callback functions
2018-03-13 00:13:44 -05:00
Christopher Haster
f72f6d6a05 Removed out of date note about endianness 2018-03-12 21:27:39 -05:00
Juerg Rast
5c4ee2109d Added a note about the callback functions
Added a short section about the callback functions, based on the answers
to issue #35 and #36
2018-03-12 21:26:40 -05:00
Christopher Haster
155224600a Fixed Travis issue with deploy stage in PRs 2018-03-12 19:57:57 -05:00
Christopher Haster
9ee112a7cb Fixed issue updating dir struct when extended dir chain
Like most of the lfs_dir_t functions, lfs_dir_append is responsible for
updating the lfs_dir_t struct if the underlying directory block is
moved. This property makes handling worn out blocks much easier by
removing the amount of state that needs to be considered during a
directory update.

However, extending the dir chain is a bit of a corner case. It's not
changing the old block, but callers of lfs_dir_append do assume the
"entry" will reside in "dir" after lfs_dir_append completes.

This issue only occurs when creating files, since mkdir does not use
the entry after lfs_dir_append. Unfortunately, the tests against
extending the directory chain were all made using mkdir.

Found by schouleu
2018-02-28 23:14:41 -06:00
Christopher Haster
d9c36371e7 Fixed handling of root as target for create operations
Before this patch, when calling lfs_mkdir or lfs_file_open with root
as the target, littlefs wouldn't find the path properly and happily
run into undefined behaviour.

The fix is to populate a directory entry for root in the lfs_dir_find
function. As an added plus, this allowed several special cases around
root to be completely dropped.
2018-02-28 23:13:02 -06:00
Christopher Haster
1476181bd1 Added LFS_CONFIG for user provided configuration of the utils
Suggested by sn00pster, LFS_CONFIG is an opt-in user provided
configuration file that will override the util implementation in
lfs_util.h. This is useful for allowing system-specific overrides
without needing to rely on git merges or other forms of patching
for updates.
2018-02-22 13:39:24 -06:00
Christopher Haster
b2124a5ae5 Fixed multiple deploy steps in Travis 2018-02-20 17:55:30 -06:00
Christopher Haster
949015ad52 Merge pull request #28 from geky/configurables
Add better general support in lfs_utils.h
2018-02-19 17:29:48 -06:00
Christopher Haster
67daf9e2c5 Added cross-compile targets for testing
Using gcc cross compilers and qemu:
- make test CC="arm-linux-gnueabi-gcc --static -mthumb" EXEC="qemu-arm"
- make test CC="powerpc-linux-gnu-gcc --static" EXEC="qemu-ppc"
- make test CC="mips-linux-gnu-gcc --static" EXEC="qemu-mips"

Also separated out Travis jobs and added some size reporting
2018-02-19 01:40:28 -06:00
Christopher Haster
a3fd2d4d6d Added more configurable utils
Note: It's still expected to modify lfs_utils.h when porting littlefs
to a new target/system. There's just too much room for system-specific
improvements, such as taking advantage of CRC hardware.

Rather, encouraging modification of lfs_util.h and making it easy to
modify and debug should result in better integration with the consuming
systems.

This just adds a bunch of quality-of-life improvements that should help
development and integration in littlefs.

- Macros that require no side-effects are all-caps
- System includes are only brought in when needed
- Malloc/free wrappers
- LFS_NO_* checks for quickly disabling things at the command line
- At least a little-bit more docs
2018-02-19 01:40:23 -06:00
Christopher Haster
a0a55fb9e5 Added conversion to/from little-endian on disk
Required to support big-endian processors, with the most notable being
the PowerPC architecture.

On little-endian architectures, these conversions can be optimized out
and have no code impact.

Initial patch provided by gmouchard
2018-02-19 01:39:08 -06:00
Christopher Haster
4f08424b51 Added software implementations of bitwise instructions
This helps significantly with supporting different compilers. Intrinsics for
different compilers can be added as they are found.

Note that for ARMCC, __builtin_ctz is not used. This was the result of a
strange issue where ARMCC only emits __builtin_ctz when passed the
--gnu flag, but __builtin_clz and __builtin_popcount are always emitted.
This isn't a big problem since the ARM instruction set doesn't have a
ctz instruction, and the npw2 based implementation is one of the most
efficient.

Also note that for littefs's purposes, we consider ctz(0) to be
undefined. This lets us save a branch in the software lfs_ctz
implementation.
2018-02-19 01:39:04 -06:00
Christopher Haster
59ce49fa4b Merge pull request #26 from Sim4n6/master
Added a .git ignore file
2018-02-08 23:28:55 -06:00
iamatacos
2f8ae344d2 Added a git ignore file with .o .d blocks dir and lfs bin 2018-02-08 02:20:51 -06:00
Christopher Haster
e611cf5050 Fix incorrect lookahead population before ack
Rather than tracking all in-flight blocks blocks during a lookahead,
littlefs uses an ack scheme to mark the first allocated block that
hasn't reached the disk yet. littlefs assumes all blocks since the
last ack are bad or in-flight, and uses this to know when it's out
of storage.

However, these unacked allocations were still being populated in the
lookahead buffer. If the whole block device fits in the lookahead
buffer, _and_ littlefs managed to scan around the whole storage while
an unacked block was still in-flight, it would assume the block was
free and misallocate it.

The fix is to only fill the lookahead buffer up to the last ack.
The internal free structure was restructured to simplify the runtime
calculation of lookahead size.
2018-02-08 01:52:39 -06:00
Christopher Haster
a25743a82a Fixed some minor error code differences
- Write on read-only file to return LFS_ERR_BADF
- Renaming directory onto file to return LFS_ERR_NOTEMPTY
- Changed LFS_ERR_INVAL in lfs_file_seek to assert
2018-02-04 14:36:36 -06:00
Christopher Haster
6716b5580a Fixed error check when truncating files to larger size 2018-02-04 14:09:55 -06:00
Christopher Haster
809ffde60f Merge pull request #24 from aldot/silence-shadow-warnings-1
Silence shadow warnings
2018-02-04 13:36:55 -06:00
Christopher Haster
dc513b172f Silenced more of aldot's warnings
Flags used:
-Wall -Wextra -Wshadow -Wwrite-strings -Wundef -Wstrict-prototypes
-Wunused -Wunused-parameter -Wunused-function -Wunused-value
-Wmissing-prototypes -Wmissing-declarations -Wold-style-definition
2018-02-04 13:15:30 -06:00
Bernhard Reutner-Fischer
aa50e03684 Commentary typo fix 2018-02-04 13:15:26 -06:00
Bernhard Reutner-Fischer
6d55755128 tests: Silence warnings in template
- no previous prototype for ‘test_assert’
- no previous prototype for ‘test_count’
- unused parameter ‘b’ in test_count
- function declaration isn’t a prototype for main
2018-02-04 13:15:17 -06:00
Bernhard Reutner-Fischer
029361ea16 Silence shadow warnings 2018-02-04 13:15:09 -06:00
Christopher Haster
fd04ed4f25 Added autogenerated release notes from commits 2018-02-02 02:35:07 -06:00
Bernhard Reutner-Fischer
3101bc92b3 Do not print command invocation if QUIET 2018-02-02 09:34:01 +01:00
Christopher Haster
d82e34c3ee Merge pull request #21 from aldot/doc-tweaks
documentation touch up, take 2
2018-02-01 15:06:24 -06:00
Bernhard Reutner-Fischer
436707c8d0 doc: Editorial tweaks 2018-02-01 14:56:43 -06:00
Bernhard Reutner-Fischer
3457252fe6 doc: Spelling fixes 2018-01-31 19:18:51 -06:00
Christopher Haster
6d8e0e21d0 Moved -Werror flag to CI only
The most useful part of -Werror is preventing code from being
merged that has warnings. However it is annoying for users who may have
different compilers with different warnings. Limiting -Werror to CI only
covers the main concern about warnings without limiting users.
2018-01-29 18:37:48 -06:00
Christopher Haster
88f678f4c6 Fixed self-assign warning in tests
Some of the tests were creating a variable `res`, however the test
system itself relies on it's own `res` variable. This worked out by
luck, but could lead to problems if the res variables were different
types.

Changed the generated variable in the test system to the less common
name `test`, which also works out to share the same prefix as other test
functions.
2018-01-29 18:37:48 -06:00
Christopher Haster
3ef4847434 Added remove step in tests to force rebuild
Found by user iamscottmoyers, this was an interesting bug with the test
system. If the new test.c file is generated fast enough, it may not have
a new timestamp and not get recompiled.

To fix, we can remove the specific files that need to be rebuilt (lfs and
test.o).
2018-01-29 18:37:41 -06:00
Christopher Haster
f694b14afb Merge pull request #16 from geky/versioning
Add version info for software library and on-disk structures
2018-01-29 01:20:23 -06:00
Christopher Haster
5a38d00dde Added deploy step in Travis to push new version as tags 2018-01-29 00:51:43 -06:00
Christopher Haster
035552a858 Add version info for software library and on-disk structures
An annoying part of filesystems is that the software library can change
independently of the on-disk structures. For this reason versioning is
very important, and must be handled separately for the software and
on-disk parts.

In this patch, littlefs provides two version numbers at compile time,
with major and minor parts, in the form of 6 macros.

LFS_VERSION        // Library version, uint32_t encoded
LFS_VERSION_MAJOR  // Major - Backwards incompatible changes
LFS_VERSION_MINOR  // Minor - Feature additions

LFS_DISK_VERSION        // On-disk version, uint32_t encoded
LFS_DISK_VERSION_MAJOR  // Major - Backwards incompatible changes
LFS_DISK_VERSION_MINOR  // Minor - Feature additions

Note that littlefs will error if it finds a major version number that
is different, or a minor version number that has regressed.
2018-01-26 14:26:25 -06:00
Christopher Haster
997c2e594e Fixed incorrect reliance on errno in emubd
When running the tests, the emubd erase function relied on the value of
errno to not change over a possible call to unlink. Annoyingly, I've
only seen this cause problems on a couple of specific Travis instances
while self-hosting littlefs on top of littlefs-fuse.
2018-01-22 19:28:29 -06:00
Christopher Haster
d88f0ac02f Added lfs_file_truncate
As a copy-on-write filesystem, the truncate function is a very nice
function to have, as it can take advantage of reusing the data already
written out to disk.
2018-01-20 19:22:44 -06:00
Christopher Haster
2ad435ed63 Added files test to littlefs-fuse tests in Travis 2018-01-20 19:22:38 -06:00
Christopher Haster
1fb6a19520 Reduced ctz traverse runtime by 2x
Unfortunately for us, the ctz skip-list does not offer very much benefit
for full traversals. Since the information about which blocks are in
use are spread throughout the file, we can't use the fast-lanes
embedded in the skip-list without missing blocks.

However, it turns out we can at least use the 2nd level of the skip-list
without missing any blocks. From an asymptotic analysis, a constant speed
up isn't interesting, but from a pragmatic perspective, a 2x speedup is
not bad.
2018-01-12 12:07:45 -06:00
Christopher Haster
db8872781a Added error code LFS_ERR_NOTEMPTY
As noted by itayzafrir, removing a non-empty directory should
error with ENOTEMPTY, not EINVAL
2018-01-12 12:07:40 -06:00
Christopher Haster
c2fab8fabb Added asserts on geometry and updated config documentation
littlefs had an unwritten assumption that the block device's program
size would be a multiple of the read size, and the block size would
be a multiple of the program size. This has already caused confusion
for users. Added a note and assert to catch unexpected geometries
early.

Also found that the prog/erase functions indicated they must return
LFS_ERR_CORRUPT to catch bad blocks. This is no longer true as errors
are found by CRC.
2018-01-11 11:56:09 -06:00
Christopher Haster
472ccc4203 Fixed file truncation without writes
In the open call, the LFS_O_TRUNC flag was correctly zeroing the file, but
it wasn't actually writing the change out to disk. This went unnoticed because
in the cases where the truncate was followed by a file write, the
updated contents would be written out correctly.

Marking the file as dirty if the file isn't already truncated fixes the
problem with the least impact. Also added better test cases around
truncating files.
2018-01-11 10:26:33 -06:00
Christopher Haster
aea3d3db46 Fixed positive seek bounds checking
This bug was a result of an annoying corner case around intermingling
signed and unsigned offsets. The boundary check that prevents seeking
a file to a position before the file was preventing valid seeks with
positive offsets.

This corner case is a bit more complicated than it looks because the
offset is signed, while the size of the file is unsigned. Simply
casting both to signed or unsigned offsets won't handle large files.
2018-01-03 15:00:04 -06:00
Christopher Haster
be22d3449f Updated links to Mbed OS 2017-12-27 12:59:54 -06:00
Christopher Haster
425aa3c694 Fixed issue with immediate exhaustion and small unaligned storage
This was a small hole in the logic that handles initializing the
lookahead buffer. To imitate exhaustion (so the block allocator
will trigger a scan), the lookahead buffer is rewound a full
lookahead and set up to look like it is exhausted. However,
unlike normal allocation, this rewind was not kept aligned to
a multiple of the scan size, which is limited by both the
lookahead buffer and the total storage size.

This bug went unnoticed for so long because it only causes
problems when the block device is both:
1. Not aligned to the lookahead buffer (not a power of 2)
2. Smaller than the lookahead buffer

While this seems like a strange corner case for a block device,
this turned out to be very common for internal flash, especially
when a handleful of blocks are reserved for code.
2017-12-27 12:59:32 -06:00
Christopher Haster
5ee20e8d77 Fixed pipefail issue that was preventing CI from reporting errors 2017-11-22 14:49:48 -06:00
Christopher Haster
bf78b09d37 Added directory list for synchronizing in flight directories
As it was, if a user operated on a directory while at the same
time iterating over the directory, the directory objects could
fall out of sync. In the best case, files may be skipped while
removing everything in a file, in the worst case, a very poorly
timed directory relocate could be missed.

Simple fix is to add the same directory tracking that is currently
in use for files, at a small code+complexity cost.
2017-11-22 14:49:43 -06:00
Christopher Haster
e169d06c57 Removed vestigial function declaration 2017-11-21 22:01:20 -06:00
Christopher Haster
996cd8af22 Revisited documentation
Mostly changed the wording around the goals/features of littlefs based
on feedback from other developers.

Also added in project links now that there are a few of those floating
around. And made the README a bit easier to navigate.
2017-11-20 00:08:02 -06:00
Christopher Haster
78c79ecb9e Added QUIET flag to tests so CI is readable 2017-11-16 17:54:44 -06:00
Christopher Haster
f9f4f5ccec Fixed standard name mismatch LFS_ERR_EXISTS -> LFS_ERR_EXIST
Matches the standard EEXIST name found on most systems. Other than
this name, all other common constant names were consistent in this
manner.
2017-11-16 17:50:14 -06:00
Christopher Haster
843e3c6c75 Added sticky-bit for preventing file syncs after write errors
Short story, files are no longer committed to directories during
file sync/close if the last write did not complete successfully.
This avoids a set of interesting user-experience issues related
to the end-of-life behaviour of the filesystem.

As a filesystem approaches end-of-life, the chances of running into
LFS_ERR_NOSPC grows rather quickly. Since this condition occurs after
at the end of a devices life, it's likely that operating in these
conditions hasn't been tested thoroughly.

In the specific case of file-writes, you can hit an LFS_ERR_NOSPC after
parts of the file have been written out. If the program simply continues
and closes the file, the file is written out half completed. Since
littlefs has a strong garuntee the prevents half-writes, it's unlikely
this state of the file would be expected.

To make things worse, since close is also responsible for memory
cleanup, it's actually _impossible_ to continue working as it was
without leaking memory.

By prevent the file commits, end-of-life behaviour should at least retain
a previous copy of the filesystem without any surprises.
2017-11-16 17:25:41 -06:00
Christopher Haster
2612e1b3fa Modified lfs_ctz_extend to be a little bit safer
Specifically around error handling. As is, incorrectly handled
errors could cause higher code to get uninitialized blocks,
potentially leading to writes to arbitray blocks on storage.
2017-11-16 15:10:17 -06:00
Christopher Haster
6664723e18 Fixed issue with committing directories to bad-blocks that are stuck
This is only an issue in the weird case that are worn down block is
left in the odd state of not being able to change the data that resides
on the block. That being said, this does pop up often when simulating
wear on block devices.

Currently, directory commits checked if the write succeeded by crcing the
block to avoid the additional RAM cost for another buffer. However,
before this commit, directory commits just checked if the block crc was
valid, rather than comparing to the expected crc. This would usually
work, unless the block was stuck in a state with valid crc.

The fix is to simply compare with the expected crc to find errors.
2017-11-16 14:53:45 -06:00
Christopher Haster
3f31c8cba3 Fixed corner case with immediate exhaustion and lookahead==block_count
The previous math for determining if we scanned all of disk wasn't set
up correctly in the lfs_mount function. If lookahead == block_count
the lfs_alloc function would think we had already searched the entire
disk.

This is only an issue if we manage to exhaust a block on the first
pass after mount, since lfs_alloc_ack resets the lookahead region
into a valid state after a succesful block allocation.
2017-11-10 10:53:33 -06:00
Christopher Haster
f4aeb8331a Fixed issue with aggressively rounding down lookahead configuration
The littlefs allows buffers to be passed statically in the case
that a system does not have a heap. Unfortunately, this means we
can't round up in the case of an unaligned lookahead buffer.

Double unfortunately, rounding down after clamping to the block device
size could result in a lookahead of zero for block devices < 32 blocks
large.

The assert in littlefs does catch this case, but rounding down prevents
support for < 32 block devices.

The solution is to simply require a 32-bit aligned buffer with an
assert. This avoids runtime problems while allowing a user to pass
in the correct buffer for < 32 block devices. Rounding up can be
handled at higher API levels.
2017-11-10 10:53:30 -06:00
Christopher Haster
db51a395ba Removed stray newline in LFS_ERROR for version 2017-11-09 19:44:23 -06:00
Christopher Haster
2ab150cc50 Removed toolchain specific warnings
- Comparisons with differently signed integer types
- Incorrectly signed constant
- Unreachable default returns
- Leaked uninitialized variables in relocate goto statements
2017-10-30 16:55:45 -05:00
Christopher Haster
0825d34f3d Adopted alternative implementation for lfs_ctz_index
Same runtime cost, however reduces the logic and avoids one of
the two big branches. See the DESIGN.md for more info.

Now uses these equations instead of the messy guess and correct method:
n = (N - w/8(popcount(N/(B-2w/8)) + 2)) / (B-2w/8)
off = N - (B-w2/8)n - w/8popcount(n)
2017-10-30 12:03:33 -05:00
Christopher Haster
46e22b2a38 Adopted lfs_ctz_index implementation using popcount
This reduces the O(n^2logn) runtime to read a file to only O(nlog).
The extra O(n) did not touch the disk, so it isn't a problem until the
files become very large, but this solution comes with very little cost.

Long story short, you can find the block index + offset pair for a
CTZ linked-list with this series of formulas:

n' = floor(N / (B - 2w/8))
N' = (B - 2w/8)n' + (w/8)popcount(n')
off' = N - N'
n, off =
  n'-1, off'+B                if off' <  0
  n',   off'+(w/8)(ctz(n')+1) if off' >= 0

For the long story, you will need to see the updated DESIGN.md
2017-10-18 00:44:30 -05:00
Christopher Haster
4fdca15a0d Slight name change with ctz skip-list functions
changed:
lfs_index -> lfs_ctz_index
lfs_index_find -> lfs_ctz_find
lfs_index_append -> lfs_ctz_append
lfs_index_traverse -> lfs_ctz_traverse
2017-10-18 00:41:43 -05:00
Christopher Haster
454b588f73 Updated SPEC.md and DESIGN.md based on recent changes
- Added math behind CTZ limits
- Added documentation over atomic moves
2017-10-12 20:31:33 -05:00
Christopher Haster
f3578e3250 Removed clamping to block size in ctz linked-list
Initially, I was concerned that the number of pointers in the ctz
linked-list could exceed the storage in a block. Long story short
this isn't really possible outside of extremely small block sizes.

Since clamping impacts the layout of files on disk, removing the
block size removed quite a bit of logic and corner cases. Replaced
with an assert on block size during initialization.

---

Long story long, the minimum block size needed to store all ctz
pointers in a filesystem can be found with this formula:

B = (w/8)*log2(2^w / (B - 2*(w/8)))

where:
B = block size in bytes
w = pointer width in bits

It's not a very pretty formula, but does give us some useful info
if we apply some math:

min block size:
32 bit ctz linked-list = 104 bytes
64 bit ctz linked-list = 448 bytes

For littlefs, 128 bytes is a perfectly reasonable minimum block size.
2017-10-12 20:31:33 -05:00
Christopher Haster
83d4c614a0 Updated copyright
Due to employee contract
Per ARM license remains under Apache 2.0
2017-10-12 20:29:10 -05:00
Christopher Haster
539409e2fb Refactored deduplicate/deorphan step to single deorphan step
Deduplication and deorphan steps aren't required under indentical
conditions, but they can be processed in the same iteration of the
filesystem. Since lfs_alloc (requires deorphan) occurs on most write
calls to the filesystem (requires deduplication), it was simpler to
just compine the steps into a single lfs_deorphan step.

Also traded out the places where lfs_rename/lfs_remove just defer
operations to the deorphan step. This adds a bit of code, but also
significantly speeds up directory operations.
2017-10-10 17:14:46 -05:00
Christopher Haster
2936514b5e Added atomic move using dirty tag in entry type
The "move problem" has been present in littlefs for a while, but I haven't
come across a solution worth implementing for various reasons.

The problem is simple: how do we move directory entries across
directories atomically? Since multiple directory entries are involved,
we can't rely entirely on the atomic block updates. It ends up being
a bit of a puzzle.

To make the problem more complicated, any directory block update can
fail due to wear, and cause the directory block to need to be relocated.
This happens rarely, but brings a large number of corner cases.

---

The solution in this patch is simple:
1. Mark source as "moving"
2. Copy source to destination
3. Remove source

If littlefs ever runs into a "moving" entry, that means a power loss
occured during a move. Either the destination entry exists or it
doesn't. In this case we just search the entire filesystem for the
destination entry.

This is expensive, however the chance of a power loss during a move
is relatively low.
2017-10-10 06:18:46 -05:00
Christopher Haster
ac9766ee39 Added self-hosting fuzz test using littlefs-fuse 2017-10-10 05:05:57 -05:00
Christopher Haster
9db1a86498 Added specification document
For covering all the technical bits
2017-10-10 05:05:26 -05:00
Christopher Haster
984340225b Fixed incorrect return value from lfs_file_seek
lfs_file_seek returned the _previous_ file offset on success, where
most standards return the _calculated_ offset on success.

This just falls into me not noticing a mistake, and shows why it's
always helpful to have a second set of eyes on code.
2017-09-26 19:50:39 -05:00
Christopher Haster
273cb7c9c8 Fixed problem with lookaheads larger than block device
Simply limiting the lookahead region to the size of
the block device fixes the problem.

Also added logic to limit the allocated region and
floor to nearest word, since the additional memory
couldn't really be used effectively.
2017-09-18 21:20:33 -05:00
Christopher Haster
d9367e05ce Fixed collection of multiblock directories
Moslty just a hole in testing. Dir blocks were not being
correctly collected when removing entries from very large
files due to forgetting about the tail-bit in the directory
block size. The test hole has now been filled.

Also added lfs_entry_size to avoid having to repeat that
expression since it is a bit ridiculous
2017-09-17 20:38:54 -05:00
Christopher Haster
a83b2fe463 Added checks for out-of-bound seeks
- out-of-bound read results in eof
- out-of-bound write will fill missing area with zeros

The write behaviour matches expected posix behaviour, but was
under consideration for not being dropped, since littlefs does
not support holes, and support of out-of-band seeks adds complexity.

However, it turned out filling with zeros was trivial, and only
cost an extra 74 bytes of flash (0.48%).
2017-09-17 18:07:08 -05:00
Christopher Haster
a8fa5e6571 Fixed some corner cases with paths
- Added handling for root to lfs_stat
- Corrected lfs_dir_find to update path even on failures
- Added more checks for missing directories in path
2017-09-17 16:51:07 -05:00
Christopher Haster
26dd49aa04 Fixed issue with negative modulo with unaligned lookaheads
When the lookahead buffer wraps around in an unaligned filesystem, it's
possible for blocks at the beginning of the disk to have a negative distance
from the lookahead, but still reside in the lookahead buffer.

Switching to signed modulo doesn't quite work due to how negative modulo
is implemented in C, so the simple solution is to shift the region to be
positive.
2017-09-17 16:51:07 -05:00
Christopher Haster
0982020fb3 Fixed issue with cold-write after seek to block boundary
This off-by-one error was caused by a slight difference between the
pos argument to lfs_index_find and lfs_index_extend. When pos is on
a block boundary, lfs_index_extend expects block to point before pos,
as it would when writing a file linearly. But when seeking to that
pos, the lfs_index_find to warm things up just supplies the block it
expects pos to be in.

Fixed the off-by-one error and added a test case for several of these
cold seek+writes.
2017-09-17 16:51:04 -05:00
23 changed files with 3447 additions and 845 deletions

9
.gitignore vendored Normal file
View File

@@ -0,0 +1,9 @@
# Compilation output
*.o
*.d
*.a
# Testing things
blocks/
lfs
test.c

View File

@@ -1,14 +1,223 @@
# Environment variables
env:
global:
- CFLAGS=-Werror
# Common test script
script:
# make sure example can at least compile
- sed -n '/``` c/,/```/{/```/d; p;}' README.md > test.c &&
CFLAGS='
# make sure example can at least compile
- sed -n '/``` c/,/```/{/```/d; p;}' README.md > test.c &&
make all CFLAGS+="
-Duser_provided_block_device_read=NULL
-Duser_provided_block_device_prog=NULL
-Duser_provided_block_device_erase=NULL
-Duser_provided_block_device_sync=NULL
-include stdio.h -Werror' make all size
-include stdio.h"
# run tests
- CFLAGS="-DLFS_READ_SIZE=16 -DLFS_PROG_SIZE=16" make test
- CFLAGS="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1" make test
- CFLAGS="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512" make test
# run tests
- make test QUIET=1
# run tests with a few different configurations
- make test QUIET=1 CFLAGS+="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1"
- make test QUIET=1 CFLAGS+="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512"
- make test QUIET=1 CFLAGS+="-DLFS_BLOCK_COUNT=1023 -DLFS_LOOKAHEAD=2048"
- make clean test QUIET=1 CFLAGS+="-DLFS_NO_INTRINSICS"
# compile and find the code size with the smallest configuration
- make clean size
OBJ="$(ls lfs*.o | tr '\n' ' ')"
CFLAGS+="-DLFS_NO{ASSERT,DEBUG,WARN,ERROR}"
| tee sizes
# update status if we succeeded, compare with master if possible
- |
if [ "$TRAVIS_TEST_RESULT" -eq 0 ]
then
CURR=$(tail -n1 sizes | awk '{print $1}')
PREV=$(curl https://api.github.com/repos/$TRAVIS_REPO_SLUG/status/master \
| jq -re "select(.sha != \"$TRAVIS_COMMIT\")
| .statuses[] | select(.context == \"$STAGE/$NAME\").description
| capture(\"code size is (?<size>[0-9]+)\").size" \
|| echo 0)
STATUS="Passed, code size is ${CURR}B"
if [ "$PREV" -ne 0 ]
then
STATUS="$STATUS ($(python -c "print '%+.2f' % (100*($CURR-$PREV)/$PREV.0)")%)"
fi
fi
# CI matrix
jobs:
include:
# native testing
- stage: test
env:
- STAGE=test
- NAME=littlefs-x86
# cross-compile with ARM (thumb mode)
- stage: test
env:
- STAGE=test
- NAME=littlefs-arm
- CC="arm-linux-gnueabi-gcc --static -mthumb"
- EXEC="qemu-arm"
install:
- sudo apt-get install gcc-arm-linux-gnueabi qemu-user
- arm-linux-gnueabi-gcc --version
- qemu-arm -version
# cross-compile with PowerPC
- stage: test
env:
- STAGE=test
- NAME=littlefs-powerpc
- CC="powerpc-linux-gnu-gcc --static"
- EXEC="qemu-ppc"
install:
- sudo apt-get install gcc-powerpc-linux-gnu qemu-user
- powerpc-linux-gnu-gcc --version
- qemu-ppc -version
# cross-compile with MIPS
- stage: test
env:
- STAGE=test
- NAME=littlefs-mips
- CC="mips-linux-gnu-gcc --static"
- EXEC="qemu-mips"
install:
- sudo add-apt-repository -y "deb http://archive.ubuntu.com/ubuntu/ xenial main universe"
- sudo apt-get -qq update
- sudo apt-get install gcc-mips-linux-gnu qemu-user
- mips-linux-gnu-gcc --version
- qemu-mips -version
# self-host with littlefs-fuse for fuzz test
- stage: test
env:
- STAGE=test
- NAME=littlefs-fuse
install:
- sudo apt-get install libfuse-dev
- git clone --depth 1 https://github.com/geky/littlefs-fuse
- fusermount -V
- gcc --version
before_script:
# setup disk for littlefs-fuse
- rm -rf littlefs-fuse/littlefs/*
- cp -r $(git ls-tree --name-only HEAD) littlefs-fuse/littlefs
- mkdir mount
- sudo chmod a+rw /dev/loop0
- dd if=/dev/zero bs=512 count=2048 of=disk
- losetup /dev/loop0 disk
script:
# self-host test
- make -C littlefs-fuse
- littlefs-fuse/lfs --format /dev/loop0
- littlefs-fuse/lfs /dev/loop0 mount
- ls mount
- mkdir mount/littlefs
- cp -r $(git ls-tree --name-only HEAD) mount/littlefs
- cd mount/littlefs
- ls
- make -B test_dirs test_files QUIET=1
# Automatically update releases
- stage: deploy
env:
- STAGE=deploy
- NAME=deploy
script:
# Update tag for version defined in lfs.h
- LFS_VERSION=$(grep -ox '#define LFS_VERSION .*' lfs.h | cut -d ' ' -f3)
- LFS_VERSION_MAJOR=$((0xffff & ($LFS_VERSION >> 16)))
- LFS_VERSION_MINOR=$((0xffff & ($LFS_VERSION >> 0)))
- LFS_VERSION="v$LFS_VERSION_MAJOR.$LFS_VERSION_MINOR"
- echo "littlefs version $LFS_VERSION"
- |
curl -u $GEKY_BOT_RELEASES -X POST \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/git/refs \
-d "{
\"ref\": \"refs/tags/$LFS_VERSION\",
\"sha\": \"$TRAVIS_COMMIT\"
}"
- |
curl -f -u $GEKY_BOT_RELEASES -X PATCH \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/git/refs/tags/$LFS_VERSION \
-d "{
\"sha\": \"$TRAVIS_COMMIT\"
}"
# Create release notes from commits
- LFS_PREV_VERSION="v$LFS_VERSION_MAJOR.$(($LFS_VERSION_MINOR-1))"
- |
if [ $(git tag -l "$LFS_PREV_VERSION") ]
then
curl -u $GEKY_BOT_RELEASES -X POST \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases \
-d "{
\"tag_name\": \"$LFS_VERSION\",
\"name\": \"$LFS_VERSION\"
}"
RELEASE=$(
curl -f https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases/tags/$LFS_VERSION
)
CHANGES=$(
git log --oneline $LFS_PREV_VERSION.. --grep='^Merge' --invert-grep
)
curl -f -u $GEKY_BOT_RELEASES -X PATCH \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/releases/$(
jq -r '.id' <<< "$RELEASE"
) \
-d "$(
jq -s '{
"body": ((.[0] // "" | sub("(?<=\n)#+ Changes.*"; ""; "mi"))
+ "### Changes\n\n" + .[1])
}' <(jq '.body' <<< "$RELEASE") <(jq -sR '.' <<< "$CHANGES")
)"
fi
# Manage statuses
before_install:
- |
curl -u $GEKY_BOT_STATUSES -X POST \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
-d "{
\"context\": \"$STAGE/$NAME\",
\"state\": \"pending\",
\"description\": \"${STATUS:-In progress}\",
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
}"
after_failure:
- |
curl -u $GEKY_BOT_STATUSES -X POST \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
-d "{
\"context\": \"$STAGE/$NAME\",
\"state\": \"failure\",
\"description\": \"${STATUS:-Failed}\",
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
}"
after_success:
- |
curl -u $GEKY_BOT_STATUSES -X POST \
https://api.github.com/repos/$TRAVIS_REPO_SLUG/statuses/${TRAVIS_PULL_REQUEST_SHA:-$TRAVIS_COMMIT} \
-d "{
\"context\": \"$STAGE/$NAME\",
\"state\": \"success\",
\"description\": \"${STATUS:-Passed}\",
\"target_url\": \"https://travis-ci.org/$TRAVIS_REPO_SLUG/jobs/$TRAVIS_JOB_ID\"
}"
# Job control
stages:
- name: test
- name: deploy
if: branch = master AND type = push

461
DESIGN.md
View File

@@ -1,6 +1,6 @@
## The design of the little filesystem
The littlefs is a little fail-safe filesystem designed for embedded systems.
A little fail-safe filesystem designed for embedded systems.
```
| | | .---._____
@@ -16,9 +16,9 @@ more about filesystem design by tackling the relative unsolved problem of
managing a robust filesystem resilient to power loss on devices
with limited RAM and ROM.
The embedded systems the littlefs is targeting are usually 32bit
microcontrollers with around 32Kbytes of RAM and 512Kbytes of ROM. These are
often paired with SPI NOR flash chips with about 4Mbytes of flash storage.
The embedded systems the littlefs is targeting are usually 32 bit
microcontrollers with around 32KB of RAM and 512KB of ROM. These are
often paired with SPI NOR flash chips with about 4MB of flash storage.
Flash itself is a very interesting piece of technology with quite a bit of
nuance. Unlike most other forms of storage, writing to flash requires two
@@ -27,22 +27,23 @@ cheap, and can be very granular. For NOR flash specifically, byte-level
programs are quite common. Erasing, however, requires an expensive operation
that forces the state of large blocks of memory to reset in a destructive
reaction that gives flash its name. The [Wikipedia entry](https://en.wikipedia.org/wiki/Flash_memory)
has more information if you are interesting in how this works.
has more information if you are interested in how this works.
This leaves us with an interesting set of limitations that can be simplified
to three strong requirements:
1. **Fail-safe** - This is actually the main goal of the littlefs and the focus
of this project. Embedded systems are usually designed without a shutdown
routine and a notable lack of user interface for recovery, so filesystems
targeting embedded systems should be prepared to lose power an any given
time.
1. **Power-loss resilient** - This is the main goal of the littlefs and the
focus of this project.
Embedded systems are usually designed without a shutdown routine and a
notable lack of user interface for recovery, so filesystems targeting
embedded systems must be prepared to lose power at any given time.
Despite this state of things, there are very few embedded filesystems that
handle power loss in a reasonable manner, and can become corrupted if the
user is unlucky enough.
handle power loss in a reasonable manner, and most can become corrupted if
the user is unlucky enough.
2. **Wear awareness** - Due to the destructive nature of flash, most flash
2. **Wear leveling** - Due to the destructive nature of flash, most flash
chips have a limited number of erase cycles, usually in the order of around
100,000 erases per block for NOR flash. Filesystems that don't take wear
into account can easily burn through blocks used to store frequently updated
@@ -52,7 +53,8 @@ to three strong requirements:
which stores a file allocation table (FAT) at a specific offset from the
beginning of disk. Every block allocation will update this table, and after
100,000 updates, the block will likely go bad, rendering the filesystem
unusable even if there are many more erase cycles available on the storage.
unusable even if there are many more erase cycles available on the storage
as a whole.
3. **Bounded RAM/ROM** - Even with the design difficulties presented by the
previous two limitations, we have already seen several flash filesystems
@@ -72,33 +74,32 @@ to three strong requirements:
## Existing designs?
There are of course, many different existing filesystem. Heres a very rough
There are of course, many different existing filesystem. Here is a very rough
summary of the general ideas behind some of them.
Most of the existing filesystems fall into the one big category of filesystem
designed in the early days of spinny magnet disks. While there is a vast amount
of interesting technology and ideas in this area, the nature of spinny magnet
disks encourage properties such as grouping writes near each other, that don't
disks encourage properties, such as grouping writes near each other, that don't
make as much sense on recent storage types. For instance, on flash, write
locality is not as important and can actually increase wear destructively.
locality is not important and can actually increase wear.
One of the most popular designs for flash filesystems is called the
[logging filesystem](https://en.wikipedia.org/wiki/Log-structured_file_system).
The flash filesystems [jffs](https://en.wikipedia.org/wiki/JFFS)
and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In
logging filesystem, data is not store in a data structure on disk, but instead
and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In a
logging filesystem, data is not stored in a data structure on disk, but instead
the changes to the files are stored on disk. This has several neat advantages,
such as the fact that the data is written in a cyclic log format naturally
such as the fact that the data is written in a cyclic log format and naturally
wear levels as a side effect. And, with a bit of error detection, the entire
filesystem can easily be designed to be resilient to power loss. The
journalling component of most modern day filesystems is actually a reduced
journaling component of most modern day filesystems is actually a reduced
form of a logging filesystem. However, logging filesystems have a difficulty
scaling as the size of storage increases. And most filesystems compensate by
caching large parts of the filesystem in RAM, a strategy that is unavailable
caching large parts of the filesystem in RAM, a strategy that is inappropriate
for embedded systems.
Another interesting filesystem design technique that the littlefs borrows the
most from, is the [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
Another interesting filesystem design technique is that of [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
A good example of this is the [btrfs](https://en.wikipedia.org/wiki/Btrfs)
filesystem. COW filesystems can easily recover from corrupted blocks and have
natural protection against power loss. However, if they are not designed with
@@ -108,14 +109,14 @@ where the COW data structures are synchronized.
## Metadata pairs
The core piece of technology that provides the backbone for the littlefs is
the concept of metadata pairs. The key idea here, is that any metadata that
the concept of metadata pairs. The key idea here is that any metadata that
needs to be updated atomically is stored on a pair of blocks tagged with
a revision count and checksum. Every update alternates between these two
pairs, so that at any time there is always a backup containing the previous
state of the metadata.
Consider a small example where each metadata pair has a revision count,
a number as data, and the xor of the block as a quick checksum. If
a number as data, and the XOR of the block as a quick checksum. If
we update the data to a value of 9, and then to a value of 5, here is
what the pair of blocks may look like after each update:
```
@@ -131,7 +132,7 @@ what the pair of blocks may look like after each update:
After each update, we can find the most up to date value of data by looking
at the revision count.
Now consider what the blocks may look like if we suddenly loss power while
Now consider what the blocks may look like if we suddenly lose power while
changing the value of data to 5:
```
block 1 block 2 block 1 block 2 block 1 block 2
@@ -150,19 +151,19 @@ check our checksum we notice that block 1 was corrupted. So we fall back to
block 2 and use the value 9.
Using this concept, the littlefs is able to update metadata blocks atomically.
There are a few other tweaks, such as using a 32bit crc and using sequence
There are a few other tweaks, such as using a 32 bit CRC and using sequence
arithmetic to handle revision count overflow, but the basic concept
is the same. These metadata pairs define the backbone of the littlefs, and the
rest of the filesystem is built on top of these atomic updates.
## Files
## Non-meta data
Now, the metadata pairs do come with some drawbacks. Most notably, each pair
requires two blocks for each block of data. I'm sure users would be very
unhappy if their storage was suddenly cut in half! Instead of storing
everything in these metadata blocks, the littlefs uses a COW data structure
for files which is in turn pointed to by a metadata block. When
we update a file, we create a copies of any blocks that are modified until
we update a file, we create copies of any blocks that are modified until
the metadata blocks are updated with the new copy. Once the metadata block
points to the new copy, we deallocate the old blocks that are no longer in use.
@@ -185,7 +186,7 @@ Here is what updating a one-block file may look like:
update data in file update metadata pair
```
It doesn't matter if we lose power while writing block 5 with the new data,
It doesn't matter if we lose power while writing new data to block 5,
since the old data remains unmodified in block 4. This example also
highlights how the atomic updates of the metadata blocks provide a
synchronization barrier for the rest of the littlefs.
@@ -200,14 +201,14 @@ Now we could just leave files here, copying the entire file on write
provides the synchronization without the duplicated memory requirements
of the metadata blocks. However, we can do a bit better.
## CTZ linked-lists
## CTZ skip-lists
There are many different data structures for representing the actual
files in filesystems. Of these, the littlefs uses a rather unique [COW](https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg)
data structure that allows the filesystem to reuse unmodified parts of the
file without additional metadata pairs.
First lets consider storing files in a simple linked-list. What happens when
First lets consider storing files in a simple linked-list. What happens when we
append a block? We have to change the last block in the linked-list to point
to this new block, which means we have to copy out the last block, and change
the second-to-last block, and then the third-to-last, and so on until we've
@@ -224,12 +225,12 @@ Exhibit A: A linked-list
To get around this, the littlefs, at its heart, stores files backwards. Each
block points to its predecessor, with the first block containing no pointers.
If you think about this, it makes a bit of sense. Appending blocks just point
to their predecessor and no other blocks need to be updated. If we update
a block in the middle, we will need to copy out the blocks that follow,
but can reuse the blocks before the modified block. Since most file operations
either reset the file each write or append to files, this design avoids
copying the file in the most common cases.
If you think about for a while, it starts to make a bit of sense. Appending
blocks just point to their predecessor and no other blocks need to be updated.
If we update a block in the middle, we will need to copy out the blocks that
follow, but can reuse the blocks before the modified block. Since most file
operations either reset the file each write or append to files, this design
avoids copying the file in the most common cases.
```
Exhibit B: A backwards linked-list
@@ -241,24 +242,24 @@ Exhibit B: A backwards linked-list
```
However, a backwards linked-list does come with a rather glaring problem.
Iterating over a file _in order_ has a runtime of O(n^2). Gah! A quadratic
runtime to just _read_ a file? That's awful. Keep in mind reading files are
Iterating over a file _in order_ has a runtime cost of O(n^2). Gah! A quadratic
runtime to just _read_ a file? That's awful. Keep in mind reading files is
usually the most common filesystem operation.
To avoid this problem, the littlefs uses a multilayered linked-list. For
every block that is divisible by a power of two, the block contains an
additional pointer that points back by that power of two. Another way of
thinking about this design is that there are actually many linked-lists
threaded together, with each linked-lists skipping an increasing number
of blocks. If you're familiar with data-structures, you may have also
recognized that this is a deterministic skip-list.
every nth block where n is divisible by 2^x, the block contains a pointer
to block n-2^x. So each block contains anywhere from 1 to log2(n) pointers
that skip to various sections of the preceding list. If you're familiar with
data-structures, you may have recognized that this is a type of deterministic
skip-list.
To find the power of two factors efficiently, we can use the instruction
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros),
which is where this linked-list's name comes from.
The name comes from the use of the
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros)
instruction, which allows us to calculate the power-of-two factors efficiently.
For a given block n, the block contains ctz(n)+1 pointers.
```
Exhibit C: A backwards CTZ linked-list
Exhibit C: A backwards CTZ skip-list
.--------. .--------. .--------. .--------. .--------. .--------.
| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |<-| data 4 |<-| data 5 |
| |<-| |--| |<-| |--| | | |
@@ -266,6 +267,9 @@ Exhibit C: A backwards CTZ linked-list
'--------' '--------' '--------' '--------' '--------' '--------'
```
The additional pointers allow us to navigate the data-structure on disk
much more efficiently than in a singly linked-list.
Taking exhibit C for example, here is the path from data block 5 to data
block 1. You can see how data block 3 was completely skipped:
```
@@ -285,15 +289,132 @@ The path to data block 0 is even more quick, requiring only two jumps:
'--------' '--------' '--------' '--------' '--------' '--------'
```
The CTZ linked-list has quite a few interesting properties. All of the pointers
in the block can be found by just knowing the index in the list of the current
block, and, with a bit of math, the amortized overhead for the linked-list is
only two pointers per block. Most importantly, the CTZ linked-list has a
worst case lookup runtime of O(logn), which brings the runtime of reading a
file down to O(n logn). Given that the constant runtime is divided by the
amount of data we can store in a block, this is pretty reasonable.
We can find the runtime complexity by looking at the path to any block from
the block containing the most pointers. Every step along the path divides
the search space for the block in half. This gives us a runtime of O(log n).
To get to the block with the most pointers, we can perform the same steps
backwards, which puts the runtime at O(2 log n) = O(log n). The interesting
part about this data structure is that this optimal path occurs naturally
if we greedily choose the pointer that covers the most distance without passing
our target block.
Here is what it might look like to update a file stored with a CTZ linked-list:
So now we have a representation of files that can be appended trivially with
a runtime of O(1), and can be read with a worst case runtime of O(n log n).
Given that the the runtime is also divided by the amount of data we can store
in a block, this is pretty reasonable.
Unfortunately, the CTZ skip-list comes with a few questions that aren't
straightforward to answer. What is the overhead? How do we handle more
pointers than we can store in a block? How do we store the skip-list in
a directory entry?
One way to find the overhead per block is to look at the data structure as
multiple layers of linked-lists. Each linked-list skips twice as many blocks
as the previous linked-list. Another way of looking at it is that each
linked-list uses half as much storage per block as the previous linked-list.
As we approach infinity, the number of pointers per block forms a geometric
series. Solving this geometric series gives us an average of only 2 pointers
per block.
![overhead_per_block](https://latex.codecogs.com/svg.latex?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D0%7D%5E%7Bn%7D%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%20%3D%20%5Csum_%7Bi%3D0%7D%5Cfrac%7B1%7D%7B2%5Ei%7D%20%3D%202)
Finding the maximum number of pointers in a block is a bit more complicated,
but since our file size is limited by the integer width we use to store the
size, we can solve for it. Setting the overhead of the maximum pointers equal
to the block size we get the following equation. Note that a smaller block size
results in more pointers, and a larger word width results in larger pointers.
![maximum overhead](https://latex.codecogs.com/svg.latex?B%20%3D%20%5Cfrac%7Bw%7D%7B8%7D%5Cleft%5Clceil%5Clog_2%5Cleft%28%5Cfrac%7B2%5Ew%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D%5Cright%29%5Cright%5Crceil)
where:
B = block size in bytes
w = word width in bits
Solving the equation for B gives us the minimum block size for various word
widths:
32 bit CTZ skip-list = minimum block size of 104 bytes
64 bit CTZ skip-list = minimum block size of 448 bytes
Since littlefs uses a 32 bit word size, we are limited to a minimum block
size of 104 bytes. This is a perfectly reasonable minimum block size, with most
block sizes starting around 512 bytes. So we can avoid additional logic to
avoid overflowing our block's capacity in the CTZ skip-list.
So, how do we store the skip-list in a directory entry? A naive approach would
be to store a pointer to the head of the skip-list, the length of the file
in bytes, the index of the head block in the skip-list, and the offset in the
head block in bytes. However this is a lot of information, and we can observe
that a file size maps to only one block index + offset pair. So it should be
sufficient to store only the pointer and file size.
But there is one problem, calculating the block index + offset pair from a
file size doesn't have an obvious implementation.
We can start by just writing down an equation. The first idea that comes to
mind is to just use a for loop to sum together blocks until we reach our
file size. We can write this equation as a summation:
![summation1](https://latex.codecogs.com/svg.latex?N%20%3D%20%5Csum_i%5En%5Cleft%5BB-%5Cfrac%7Bw%7D%7B8%7D%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%5Cright%5D)
where:
B = block size in bytes
w = word width in bits
n = block index in skip-list
N = file size in bytes
And this works quite well, but is not trivial to calculate. This equation
requires O(n) to compute, which brings the entire runtime of reading a file
to O(n^2 log n). Fortunately, the additional O(n) does not need to touch disk,
so it is not completely unreasonable. But if we could solve this equation into
a form that is easily computable, we can avoid a big slowdown.
Unfortunately, the summation of the CTZ instruction presents a big challenge.
How would you even begin to reason about integrating a bitwise instruction?
Fortunately, there is a powerful tool I've found useful in these situations:
The [On-Line Encyclopedia of Integer Sequences (OEIS)](https://oeis.org/).
If we work out the first couple of values in our summation, we find that CTZ
maps to [A001511](https://oeis.org/A001511), and its partial summation maps
to [A005187](https://oeis.org/A005187), and surprisingly, both of these
sequences have relatively trivial equations! This leads us to a rather
unintuitive property:
![mindblown](https://latex.codecogs.com/svg.latex?%5Csum_i%5En%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%20%3D%202n-%5Ctext%7Bpopcount%7D%28n%29)
where:
ctz(x) = the number of trailing bits that are 0 in x
popcount(x) = the number of bits that are 1 in x
It's a bit bewildering that these two seemingly unrelated bitwise instructions
are related by this property. But if we start to dissect this equation we can
see that it does hold. As n approaches infinity, we do end up with an average
overhead of 2 pointers as we find earlier. And popcount seems to handle the
error from this average as it accumulates in the CTZ skip-list.
Now we can substitute into the original equation to get a trivial equation
for a file size:
![summation2](https://latex.codecogs.com/svg.latex?N%20%3D%20Bn%20-%20%5Cfrac%7Bw%7D%7B8%7D%5Cleft%282n-%5Ctext%7Bpopcount%7D%28n%29%5Cright%29)
Unfortunately, we're not quite done. The popcount function is non-injective,
so we can only find the file size from the block index, not the other way
around. However, we can solve for an n' block index that is greater than n
with an error bounded by the range of the popcount function. We can then
repeatedly substitute this n' into the original equation until the error
is smaller than the integer division. As it turns out, we only need to
perform this substitution once. Now we directly calculate our block index:
![formulaforn](https://latex.codecogs.com/svg.latex?n%20%3D%20%5Cleft%5Clfloor%5Cfrac%7BN-%5Cfrac%7Bw%7D%7B8%7D%5Cleft%28%5Ctext%7Bpopcount%7D%5Cleft%28%5Cfrac%7BN%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D-1%5Cright%29&plus;2%5Cright%29%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D%5Cright%5Crfloor)
Now that we have our block index n, we can just plug it back into the above
equation to find the offset. However, we do need to rearrange the equation
a bit to avoid integer overflow:
![formulaforoff](https://latex.codecogs.com/svg.latex?%5Cmathit%7Boff%7D%20%3D%20N%20-%20%5Cleft%28B-2%5Cfrac%7Bw%7D%7B8%7D%5Cright%29n%20-%20%5Cfrac%7Bw%7D%7B8%7D%5Ctext%7Bpopcount%7D%28n%29)
The solution involves quite a bit of math, but computers are very good at math.
Now we can solve for both the block index and offset from the file size in O(1).
Here is what it might look like to update a file stored with a CTZ skip-list:
```
block 1 block 2
.---------.---------.
@@ -367,7 +488,7 @@ v
## Block allocation
So those two ideas provide the grounds for the filesystem. The metadata pairs
give us directories, and the CTZ linked-lists give us files. But this leaves
give us directories, and the CTZ skip-lists give us files. But this leaves
one big [elephant](https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg)
of a question. How do we get those blocks in the first place?
@@ -380,16 +501,17 @@ scanned to find the most recent free list, but once the list was found the
state of all free blocks becomes known.
However, this approach had several issues:
- There was a lot of nuanced logic for adding blocks to the free list without
modifying the blocks, since the blocks remain active until the metadata is
updated.
- The free list had to support both additions and removals in fifo order while
- The free list had to support both additions and removals in FIFO order while
minimizing block erases.
- The free list had to handle the case where the file system completely ran
out of blocks and may no longer be able to add blocks to the free list.
- If we used a revision count to track the most recently updated free list,
metadata blocks that were left unmodified were ticking time bombs that would
cause the system to go haywire if the revision count overflowed
cause the system to go haywire if the revision count overflowed.
- Every single metadata block wasted space to store these free list references.
Actually, to simplify, this approach had one massive glaring issue: complexity.
@@ -419,7 +541,7 @@ would have an abhorrent runtime.
So the littlefs compromises. It doesn't store a bitmap the size of the storage,
but it does store a little bit-vector that contains a fixed set lookahead
for block allocations. During a block allocation, the lookahead vector is
checked for any free blocks, if there are none, the lookahead region jumps
checked for any free blocks. If there are none, the lookahead region jumps
forward and the entire filesystem is scanned for free blocks.
Here's what it might look like to allocate 4 blocks on a decently busy
@@ -502,7 +624,7 @@ So, as a solution, the littlefs adopted a sort of threaded tree. Each
directory not only contains pointers to all of its children, but also a
pointer to the next directory. These pointers create a linked-list that
is threaded through all of the directories in the filesystem. Since we
only use this linked list to check for existance, the order doesn't actually
only use this linked list to check for existence, the order doesn't actually
matter. As an added plus, we can repurpose the pointer for the individual
directory linked-lists and avoid using any additional space.
@@ -653,9 +775,17 @@ deorphan step that simply iterates through every directory in the linked-list
and checks it against every directory entry in the filesystem to see if it
has a parent. The deorphan step occurs on the first block allocation after
boot, so orphans should never cause the littlefs to run out of storage
prematurely.
prematurely. Note that the deorphan step never needs to run in a read-only
filesystem.
And for my final trick, moving a directory:
## The move problem
Now we have a real problem. How do we move things between directories while
remaining power resilient? Even looking at the problem from a high level,
it seems impossible. We can update directory blocks atomically, but atomically
updating two independent directory blocks is not an atomic operation.
Here's the steps the filesystem may go through to move a directory:
```
.--------.
|root dir|-.
@@ -716,25 +846,142 @@ v
'--------'
```
Note that once again we don't care about the ordering of directories in the
linked-list, so we can simply leave directories in their old positions. This
does make the diagrams a bit hard to draw, but the littlefs doesn't really
care.
We can leave any orphans up to the deorphan step to collect, but that doesn't
help the case where dir A has both dir B and the root dir as parents if we
lose power inconveniently.
It's also worth noting that once again we have an operation that isn't actually
atomic. After we add directory A to directory B, we could lose power, leaving
directory A as a part of both the root directory and directory B. However,
there isn't anything inherent to the littlefs that prevents a directory from
having multiple parents, so in this case, we just allow that to happen. Extra
care is taken to only remove a directory from the linked-list if there are
no parents left in the filesystem.
Initially, you might think this is fine. Dir A _might_ end up with two parents,
but the filesystem will still work as intended. But then this raises the
question of what do we do when the dir A wears out? For other directory blocks
we can update the parent pointer, but for a dir with two parents we would need
work out how to update both parents. And the check for multiple parents would
need to be carried out for every directory, even if the directory has never
been moved.
It also presents a bad user-experience, since the condition of ending up with
two parents is rare, it's unlikely user-level code will be prepared. Just think
about how a user would recover from a multi-parented directory. They can't just
remove one directory, since remove would report the directory as "not empty".
Other atomic filesystems simple COW the entire directory tree. But this
introduces a significant bit of complexity, which leads to code size, along
with a surprisingly expensive runtime cost during what most users assume is
a single pointer update.
Another option is to update the directory block we're moving from to point
to the destination with a sort of predicate that we have moved if the
destination exists. Unfortunately, the omnipresent concern of wear could
cause any of these directory entries to change blocks, and changing the
entry size before a move introduces complications if it spills out of
the current directory block.
So how do we go about moving a directory atomically?
We rely on the improbableness of power loss.
Power loss during a move is certainly possible, but it's actually relatively
rare. Unless a device is writing to a filesystem constantly, it's unlikely that
a power loss will occur during filesystem activity. We still need to handle
the condition, but runtime during a power loss takes a back seat to the runtime
during normal operations.
So what littlefs does is inelegantly simple. When littlefs moves a file, it
marks the file as "moving". This is stored as a single bit in the directory
entry and doesn't take up much space. Then littlefs moves the directory,
finishing with the complete remove of the "moving" directory entry.
```
.--------.
|root dir|-.
| pair 0 | |
.--------| |-'
| '--------'
| .-' '-.
| v v
| .--------. .--------.
'->| dir A |->| dir B |
| pair 0 | | pair 0 |
| | | |
'--------' '--------'
| update root directory to mark directory A as moving
v
.----------.
|root dir |-.
| pair 0 | |
.-------| moving A!|-'
| '----------'
| .-' '-.
| v v
| .--------. .--------.
'->| dir A |->| dir B |
| pair 0 | | pair 0 |
| | | |
'--------' '--------'
| update directory B to point to directory A
v
.----------.
|root dir |-.
| pair 0 | |
.-------| moving A!|-'
| '----------'
| .-----' '-.
| | v
| | .--------.
| | .->| dir B |
| | | | pair 0 |
| | | | |
| | | '--------'
| | .-------'
| v v |
| .--------. |
'->| dir A |-'
| pair 0 |
| |
'--------'
| update root to no longer contain directory A
v
.--------.
|root dir|-.
| pair 0 | |
.----| |-'
| '--------'
| |
| v
| .--------.
| .->| dir B |
| | | pair 0 |
| '--| |-.
| '--------' |
| | |
| v |
| .--------. |
'--->| dir A |-'
| pair 0 |
| |
'--------'
```
Now, if we run into a directory entry that has been marked as "moved", one
of two things is possible. Either the directory entry exists elsewhere in the
filesystem, or it doesn't. This is a O(n) operation, but only occurs in the
unlikely case we lost power during a move.
And we can easily fix the "moved" directory entry. Since we're already scanning
the filesystem during the deorphan step, we can also check for moved entries.
If we find one, we either remove the "moved" marking or remove the whole entry
if it exists elsewhere in the filesystem.
## Wear awareness
So now that we have all of the pieces of a filesystem, we can look at a more
subtle attribute of embedded storage: The wear down of flash blocks.
The first concern for the littlefs, is that prefectly valid blocks can suddenly
The first concern for the littlefs, is that perfectly valid blocks can suddenly
become unusable. As a nice side-effect of using a COW data-structure for files,
we can simply move on to a different block when a file write fails. All
modifications to files are performed in copies, so we will only replace the
@@ -906,23 +1153,28 @@ develops errors and needs to be moved.
## Wear leveling
The second concern for the littlefs, is that blocks in the filesystem may wear
The second concern for the littlefs is that blocks in the filesystem may wear
unevenly. In this situation, a filesystem may meet an early demise where
there are no more non-corrupted blocks that aren't in use. It may be entirely
possible that files were written once and left unmodified, wasting the
potential erase cycles of the blocks it sits on.
there are no more non-corrupted blocks that aren't in use. It's common to
have files that were written once and left unmodified, wasting the potential
erase cycles of the blocks it sits on.
Wear leveling is a term that describes distributing block writes evenly to
avoid the early termination of a flash part. There are typically two levels
of wear leveling:
1. Dynamic wear leveling - Blocks are distributed evenly during blocks writes.
Note that the issue with write-once files still exists in this case.
2. Static wear leveling - Unmodified blocks are evicted for new block writes.
This provides the longest lifetime for a flash device.
1. Dynamic wear leveling - Wear is distributed evenly across all **dynamic**
blocks. Usually this is accomplished by simply choosing the unused block
with the lowest amount of wear. Note this does not solve the problem of
static data.
2. Static wear leveling - Wear is distributed evenly across all **dynamic**
and **static** blocks. Unmodified blocks may be evicted for new block
writes. This does handle the problem of static data but may lead to
wear amplification.
Now, it's possible to use the revision count on metadata pairs to approximate
the wear of a metadata block. And combined with the COW nature of files, the
littlefs could provide a form of dynamic wear leveling.
In littlefs's case, it's possible to use the revision count on metadata pairs
to approximate the wear of a metadata block. And combined with the COW nature
of files, littlefs could provide your usual implementation of dynamic wear
leveling.
However, the littlefs does not. This is for a few reasons. Most notably, even
if the littlefs did implement dynamic wear leveling, this would still not
@@ -933,19 +1185,20 @@ As a flash device reaches the end of its life, the metadata blocks will
naturally be the first to go since they are updated most often. In this
situation, the littlefs is designed to simply move on to another set of
metadata blocks. This travelling means that at the end of a flash device's
life, the filesystem will have worn the device down as evenly as a dynamic
wear leveling filesystem could anyways. Simply put, if the lifetime of flash
is a serious concern, static wear leveling is the only valid solution.
life, the filesystem will have worn the device down nearly as evenly as the
usual dynamic wear leveling could. More aggressive wear leveling would come
with a code-size cost for marginal benefit.
This is a very important takeaway to note. If your storage stack uses highly
sensitive storage such as NAND flash. In most cases you are going to be better
off just using a [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
One important takeaway to note, if your storage stack uses highly sensitive
storage such as NAND flash, static wear leveling is the only valid solution.
In most cases you are going to be better off using a full [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
NAND flash already has many limitations that make it poorly suited for an
embedded system: low erase cycles, very large blocks, errors that can develop
even during reads, errors that can develop during writes of neighboring blocks.
Managing sensitive storage such as NAND flash is out of scope for the littlefs.
The littlefs does have some properties that may be beneficial on top of a FTL,
such as limiting the number of writes where possible. But if you have the
such as limiting the number of writes where possible, but if you have the
storage requirements that necessitate the need of NAND flash, you should have
the RAM to match and just use an FTL or flash filesystem.
@@ -955,18 +1208,18 @@ So, to summarize:
1. The littlefs is composed of directory blocks
2. Each directory is a linked-list of metadata pairs
3. These metadata pairs can be updated atomically by alternative which
3. These metadata pairs can be updated atomically by alternating which
metadata block is active
4. Directory blocks contain either references to other directories or files
5. Files are represented by copy-on-write CTZ linked-lists
6. The CTZ linked-lists support appending in O(1) and reading in O(n logn)
7. Blocks are allocated by scanning the filesystem for used blocks in a
fixed-size lookahead region is that stored in a bit-vector
8. To facilitate scanning the filesystem, all directories are part of a
5. Files are represented by copy-on-write CTZ skip-lists which support O(1)
append and O(n log n) reading
6. Blocks are allocated by scanning the filesystem for used blocks in a
fixed-size lookahead region that is stored in a bit-vector
7. To facilitate scanning the filesystem, all directories are part of a
linked-list that is threaded through the entire filesystem
9. If a block develops an error, the littlefs allocates a new block, and
8. If a block develops an error, the littlefs allocates a new block, and
moves the data and references of the old block to the new.
10. Any case where an atomic operation is not possible, it is taken care of
9. Any case where an atomic operation is not possible, mistakes are resolved
by a deorphan step that occurs on the first allocation after boot
That's the little filesystem. Thanks for reading!

View File

@@ -1,8 +1,8 @@
TARGET = lfs
CC = gcc
AR = ar
SIZE = size
CC ?= gcc
AR ?= ar
SIZE ?= size
SRC += $(wildcard *.c emubd/*.c)
OBJ := $(SRC:.c=.o)
@@ -11,16 +11,18 @@ ASM := $(SRC:.c=.s)
TEST := $(patsubst tests/%.sh,%,$(wildcard tests/test_*))
SHELL = /bin/bash -o pipefail
ifdef DEBUG
CFLAGS += -O0 -g3
override CFLAGS += -O0 -g3
else
CFLAGS += -Os
override CFLAGS += -Os
endif
ifdef WORD
CFLAGS += -m$(WORD)
override CFLAGS += -m$(WORD)
endif
CFLAGS += -I.
CFLAGS += -std=c99 -Wall -pedantic
override CFLAGS += -I.
override CFLAGS += -std=c99 -Wall -pedantic
all: $(TARGET)
@@ -31,10 +33,14 @@ size: $(OBJ)
$(SIZE) -t $^
.SUFFIXES:
test: test_format test_dirs test_files test_seek test_parallel \
test_alloc test_paths test_orphan test_corrupt
test: test_format test_dirs test_files test_seek test_truncate test_parallel \
test_alloc test_paths test_orphan test_move test_corrupt
test_%: tests/test_%.sh
ifdef QUIET
@./$< | sed -n '/^[-=]/p'
else
./$<
endif
-include $(DEP)

View File

@@ -11,23 +11,17 @@ A little fail-safe filesystem designed for embedded systems.
| | |
```
**Fail-safe** - The littlefs is designed to work consistently with random
power failures. During filesystem operations the storage on disk is always
kept in a valid state. The filesystem also has strong copy-on-write garuntees.
When updating a file, the original file will remain unmodified until the
file is closed, or sync is called.
**Bounded RAM/ROM** - The littlefs is designed to work with a limited amount
of memory. Recursion is avoided and dynamic memory is limited to configurable
buffers that can be provided statically.
**Wear awareness** - While the littlefs does not implement static wear
leveling, the littlefs takes into account write errors reported by the
underlying block device and uses a limited form of dynamic wear leveling
to manage blocks that go bad during the lifetime of the filesystem.
**Power-loss resilient** - The littlefs is designed for systems that may have
random power failures. The littlefs has strong copy-on-write guarantees and
storage on disk is always kept in a valid state.
**Bounded ram/rom** - The littlefs is designed to work in a
limited amount of memory, recursion is avoided, and dynamic memory is kept
to a minimum. The littlefs allocates two fixed-size buffers for general
operations, and one fixed-size buffer per file. If there is only ever one file
in use, all memory can be provided statically and the littlefs can be used
in a system without dynamic memory.
**Wear leveling** - Since the most common form of embedded storage is erodible
flash memories, littlefs provides a form of dynamic wear leveling for systems
that can not fit a full flash translation layer.
## Example
@@ -94,9 +88,9 @@ int main(void) {
## Usage
Detailed documentation (or at least as much detail as is currently available)
can be cound in the comments in [lfs.h](lfs.h).
can be found in the comments in [lfs.h](lfs.h).
As you may have noticed, the littlefs takes in a configuration structure that
As you may have noticed, littlefs takes in a configuration structure that
defines how the filesystem operates. The configuration struct provides the
filesystem with the block device operations and dimensions, tweakable
parameters that tradeoff memory usage for performance, and optional
@@ -104,14 +98,16 @@ static buffers if the user wants to avoid dynamic memory.
The state of the littlefs is stored in the `lfs_t` type which is left up
to the user to allocate, allowing multiple filesystems to be in use
simultaneously. With the `lfs_t` and configuration struct, a user can either
simultaneously. With the `lfs_t` and configuration struct, a user can
format a block device or mount the filesystem.
Once mounted, the littlefs provides a full set of posix-like file and
Once mounted, the littlefs provides a full set of POSIX-like file and
directory functions, with the deviation that the allocation of filesystem
structures must be provided by the user. An important addition is that
no file updates will actually be written to disk until a sync or close
is called.
structures must be provided by the user.
All POSIX operations, such as remove and rename, are atomic, even in event
of power-loss. Additionally, no file updates are actually committed to the
filesystem until sync or close is called on the file.
## Other notes
@@ -119,26 +115,50 @@ All littlefs have the potential to return a negative error code. The errors
can be either one of those found in the `enum lfs_error` in [lfs.h](lfs.h),
or an error returned by the user's block device operations.
It should also be noted that the littlefs does not do anything to insure
that the data written to disk is machine portable. It should be fine as
long as the machines involved share endianness and don't have really
strange padding requirements. If the question does come up, the littlefs
metadata should be stored on disk in little-endian format.
In the configuration struct, the `prog` and `erase` function provided by the
user may return a `LFS_ERR_CORRUPT` error if the implementation already can
detect corrupt blocks. However, the wear leveling does not depend on the return
code of these functions, instead all data is read back and checked for
integrity.
## Design
If your storage caches writes, make sure that the provided `sync` function
flushes all the data to memory and ensures that the next read fetches the data
from memory, otherwise data integrity can not be guaranteed. If the `write`
function does not perform caching, and therefore each `read` or `write` call
hits the memory, the `sync` function can simply return 0.
the littlefs was developed with the goal of learning more about filesystem
design by tackling the relative unsolved problem of managing a robust
filesystem resilient to power loss on devices with limited RAM and ROM.
More detail on the solutions and tradeoffs incorporated into this filesystem
can be found in [DESIGN.md](DESIGN.md).
## Reference material
[DESIGN.md](DESIGN.md) - DESIGN.md contains a fully detailed dive into how
littlefs actually works. I would encourage you to read it since the
solutions and tradeoffs at work here are quite interesting.
[SPEC.md](SPEC.md) - SPEC.md contains the on-disk specification of littlefs
with all the nitty-gritty details. Can be useful for developing tooling.
## Testing
The littlefs comes with a test suite designed to run on a pc using the
The littlefs comes with a test suite designed to run on a PC using the
[emulated block device](emubd/lfs_emubd.h) found in the emubd directory.
The tests assume a linux environment and can be started with make:
The tests assume a Linux environment and can be started with make:
``` bash
make test
```
## Related projects
[Mbed OS](https://github.com/ARMmbed/mbed-os/tree/master/features/filesystem/littlefs) -
The easiest way to get started with littlefs is to jump into [Mbed](https://os.mbed.com/),
which already has block device drivers for most forms of embedded storage. The
littlefs is available in Mbed OS as the [LittleFileSystem](https://os.mbed.com/docs/latest/reference/littlefilesystem.html)
class.
[littlefs-fuse](https://github.com/geky/littlefs-fuse) - A [FUSE](https://github.com/libfuse/libfuse)
wrapper for littlefs. The project allows you to mount littlefs directly on a
Linux machine. Can be useful for debugging littlefs if you have an SD card
handy.
[littlefs-js](https://github.com/geky/littlefs-js) - A javascript wrapper for
littlefs. I'm not sure why you would want this, but it is handy for demos.
You can see it in action [here](http://littlefs.geky.net/demo.html).

370
SPEC.md Normal file
View File

@@ -0,0 +1,370 @@
## The little filesystem technical specification
This is the technical specification of the little filesystem. This document
covers the technical details of how the littlefs is stored on disk for
introspection and tooling development. This document assumes you are
familiar with the design of the littlefs, for more info on how littlefs
works check out [DESIGN.md](DESIGN.md).
```
| | | .---._____
.-----. | |
--|o |---| littlefs |
--| |---| |
'-----' '----------'
| | |
```
## Some important details
- The littlefs is a block-based filesystem. This is, the disk is divided into
an array of evenly sized blocks that are used as the logical unit of storage
in littlefs. Block pointers are stored in 32 bits.
- There is no explicit free-list stored on disk, the littlefs only knows what
is in use in the filesystem.
- The littlefs uses the value of 0xffffffff to represent a null block-pointer.
- All values in littlefs are stored in little-endian byte order.
## Directories / Metadata pairs
Metadata pairs form the backbone of the littlefs and provide a system for
atomic updates. Even the superblock is stored in a metadata pair.
As their name suggests, a metadata pair is stored in two blocks, with one block
acting as a redundant backup in case the other is corrupted. These two blocks
could be anywhere in the disk and may not be next to each other, so any
pointers to directory pairs need to be stored as two block pointers.
Here's the layout of metadata blocks on disk:
| offset | size | description |
|--------|---------------|----------------|
| 0x00 | 32 bits | revision count |
| 0x04 | 32 bits | dir size |
| 0x08 | 64 bits | tail pointer |
| 0x10 | size-16 bytes | dir entries |
| 0x00+s | 32 bits | CRC |
**Revision count** - Incremented every update, only the uncorrupted
metadata-block with the most recent revision count contains the valid metadata.
Comparison between revision counts must use sequence comparison since the
revision counts may overflow.
**Dir size** - Size in bytes of the contents in the current metadata block,
including the metadata-pair metadata. Additionally, the highest bit of the
dir size may be set to indicate that the directory's contents continue on the
next metadata-pair pointed to by the tail pointer.
**Tail pointer** - Pointer to the next metadata-pair in the filesystem.
A null pair-pointer (0xffffffff, 0xffffffff) indicates the end of the list.
If the highest bit in the dir size is set, this points to the next
metadata-pair in the current directory, otherwise it points to an arbitrary
metadata-pair. Starting with the superblock, the tail-pointers form a
linked-list containing all metadata-pairs in the filesystem.
**CRC** - 32 bit CRC used to detect corruption from power-lost, from block
end-of-life, or just from noise on the storage bus. The CRC is appended to
the end of each metadata-block. The littlefs uses the standard CRC-32, which
uses a polynomial of 0x04c11db7, initialized with 0xffffffff.
Here's an example of a simple directory stored on disk:
```
(32 bits) revision count = 10 (0x0000000a)
(32 bits) dir size = 154 bytes, end of dir (0x0000009a)
(64 bits) tail pointer = 37, 36 (0x00000025, 0x00000024)
(32 bits) CRC = 0xc86e3106
00000000: 0a 00 00 00 9a 00 00 00 25 00 00 00 24 00 00 00 ........%...$...
00000010: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 22 "...........tea"
00000020: 08 00 06 07 00 00 00 06 00 00 00 63 6f 66 66 65 ...........coffe
00000030: 65 22 08 00 04 09 00 00 00 08 00 00 00 73 6f 64 e"...........sod
00000040: 61 22 08 00 05 1d 00 00 00 1c 00 00 00 6d 69 6c a"...........mil
00000050: 6b 31 22 08 00 05 1f 00 00 00 1e 00 00 00 6d 69 k1"...........mi
00000060: 6c 6b 32 22 08 00 05 21 00 00 00 20 00 00 00 6d lk2"...!... ...m
00000070: 69 6c 6b 33 22 08 00 05 23 00 00 00 22 00 00 00 ilk3"...#..."...
00000080: 6d 69 6c 6b 34 22 08 00 05 25 00 00 00 24 00 00 milk4"...%...$..
00000090: 00 6d 69 6c 6b 35 06 31 6e c8 .milk5.1n.
```
A note about the tail pointer linked-list: Normally, this linked-list is
threaded through the entire filesystem. However, after power-loss this
linked-list may become out of sync with the rest of the filesystem.
- The linked-list may contain a directory that has actually been removed
- The linked-list may contain a metadata pair that has not been updated after
a block in the pair has gone bad.
The threaded linked-list must be checked for these errors before it can be
used reliably. Fortunately, the threaded linked-list can simply be ignored
if littlefs is mounted read-only.
## Entries
Each metadata block contains a series of entries that follow a standard
layout. An entry contains the type of the entry, along with a section for
entry-specific data, attributes, and a name.
Here's the layout of entries on disk:
| offset | size | description |
|---------|------------------------|----------------------------|
| 0x0 | 8 bits | entry type |
| 0x1 | 8 bits | entry length |
| 0x2 | 8 bits | attribute length |
| 0x3 | 8 bits | name length |
| 0x4 | entry length bytes | entry-specific data |
| 0x4+e | attribute length bytes | system-specific attributes |
| 0x4+e+a | name length bytes | entry name |
**Entry type** - Type of the entry, currently this is limited to the following:
- 0x11 - file entry
- 0x22 - directory entry
- 0x2e - superblock entry
Additionally, the type is broken into two 4 bit nibbles, with the upper nibble
specifying the type's data structure used when scanning the filesystem. The
lower nibble clarifies the type further when multiple entries share the same
data structure.
The highest bit is reserved for marking the entry as "moved". If an entry
is marked as "moved", the entry may also exist somewhere else in the
filesystem. If the entry exists elsewhere, this entry must be treated as
though it does not exist.
**Entry length** - Length in bytes of the entry-specific data. This does
not include the entry type size, attributes, or name. The full size in bytes
of the entry is 4 + entry length + attribute length + name length.
**Attribute length** - Length of system-specific attributes in bytes. Since
attributes are system specific, there is not much guarantee on the values in
this section, and systems are expected to work even when it is empty. See the
[attributes](#entry-attributes) section for more details.
**Name length** - Length of the entry name. Entry names are stored as UTF8,
although most systems will probably only support ASCII. Entry names can not
contain '/' and can not be '.' or '..' as these are a part of the syntax of
filesystem paths.
Here's an example of a simple entry stored on disk:
```
(8 bits) entry type = file (0x11)
(8 bits) entry length = 8 bytes (0x08)
(8 bits) attribute length = 0 bytes (0x00)
(8 bits) name length = 12 bytes (0x0c)
(8 bytes) entry data = 05 00 00 00 20 00 00 00
(12 bytes) entry name = smallavacado
00000000: 11 08 00 0c 05 00 00 00 20 00 00 00 73 6d 61 6c ........ ...smal
00000010: 6c 61 76 61 63 61 64 6f lavacado
```
## Superblock
The superblock is the anchor for the littlefs. The superblock is stored as
a metadata pair containing a single superblock entry. It is through the
superblock that littlefs can access the rest of the filesystem.
The superblock can always be found in blocks 0 and 1, however fetching the
superblock requires knowing the block size. The block size can be guessed by
searching the beginning of disk for the string "littlefs", although currently
the filesystems relies on the user providing the correct block size.
The superblock is the most valuable block in the filesystem. It is updated
very rarely, only during format or when the root directory must be moved. It
is encouraged to always write out both superblock pairs even though it is not
required.
Here's the layout of the superblock entry:
| offset | size | description |
|--------|------------------------|----------------------------------------|
| 0x00 | 8 bits | entry type (0x2e for superblock entry) |
| 0x01 | 8 bits | entry length (20 bytes) |
| 0x02 | 8 bits | attribute length |
| 0x03 | 8 bits | name length (8 bytes) |
| 0x04 | 64 bits | root directory |
| 0x0c | 32 bits | block size |
| 0x10 | 32 bits | block count |
| 0x14 | 32 bits | version |
| 0x18 | attribute length bytes | system-specific attributes |
| 0x18+a | 8 bytes | magic string ("littlefs") |
**Root directory** - Pointer to the root directory's metadata pair.
**Block size** - Size of the logical block size used by the filesystem.
**Block count** - Number of blocks in the filesystem.
**Version** - The littlefs version encoded as a 32 bit value. The upper 16 bits
encodes the major version, which is incremented when a breaking-change is
introduced in the filesystem specification. The lower 16 bits encodes the
minor version, which is incremented when a backwards-compatible change is
introduced. Non-standard Attribute changes do not change the version. This
specification describes version 1.1 (0x00010001), which is the first version
of littlefs.
**Magic string** - The magic string "littlefs" takes the place of an entry
name.
Here's an example of a complete superblock:
```
(32 bits) revision count = 3 (0x00000003)
(32 bits) dir size = 52 bytes, end of dir (0x00000034)
(64 bits) tail pointer = 3, 2 (0x00000003, 0x00000002)
(8 bits) entry type = superblock (0x2e)
(8 bits) entry length = 20 bytes (0x14)
(8 bits) attribute length = 0 bytes (0x00)
(8 bits) name length = 8 bytes (0x08)
(64 bits) root directory = 3, 2 (0x00000003, 0x00000002)
(32 bits) block size = 512 bytes (0x00000200)
(32 bits) block count = 1024 blocks (0x00000400)
(32 bits) version = 1.1 (0x00010001)
(8 bytes) magic string = littlefs
(32 bits) CRC = 0xc50b74fa
00000000: 03 00 00 00 34 00 00 00 03 00 00 00 02 00 00 00 ....4...........
00000010: 2e 14 00 08 03 00 00 00 02 00 00 00 00 02 00 00 ................
00000020: 00 04 00 00 01 00 01 00 6c 69 74 74 6c 65 66 73 ........littlefs
00000030: fa 74 0b c5 .t..
```
## Directory entries
Directories are stored in entries with a pointer to the first metadata pair
in the directory. Keep in mind that a directory may be composed of multiple
metadata pairs connected by the tail pointer when the highest bit in the dir
size is set.
Here's the layout of a directory entry:
| offset | size | description |
|--------|------------------------|-----------------------------------------|
| 0x0 | 8 bits | entry type (0x22 for directory entries) |
| 0x1 | 8 bits | entry length (8 bytes) |
| 0x2 | 8 bits | attribute length |
| 0x3 | 8 bits | name length |
| 0x4 | 64 bits | directory pointer |
| 0xc | attribute length bytes | system-specific attributes |
| 0xc+a | name length bytes | directory name |
**Directory pointer** - Pointer to the first metadata pair in the directory.
Here's an example of a directory entry:
```
(8 bits) entry type = directory (0x22)
(8 bits) entry length = 8 bytes (0x08)
(8 bits) attribute length = 0 bytes (0x00)
(8 bits) name length = 3 bytes (0x03)
(64 bits) directory pointer = 5, 4 (0x00000005, 0x00000004)
(3 bytes) name = tea
00000000: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 "...........tea
```
## File entries
Files are stored in entries with a pointer to the head of the file and the
size of the file. This is enough information to determine the state of the
CTZ skip-list that is being referenced.
How files are actually stored on disk is a bit complicated. The full
explanation of CTZ skip-lists can be found in [DESIGN.md](DESIGN.md#ctz-skip-lists).
A terribly quick summary: For every nth block where n is divisible by 2^x,
the block contains a pointer to block n-2^x. These pointers are stored in
increasing order of x in each block of the file preceding the data in the
block.
The maximum number of pointers in a block is bounded by the maximum file size
divided by the block size. With 32 bits for file size, this results in a
minimum block size of 104 bytes.
Here's the layout of a file entry:
| offset | size | description |
|--------|------------------------|------------------------------------|
| 0x0 | 8 bits | entry type (0x11 for file entries) |
| 0x1 | 8 bits | entry length (8 bytes) |
| 0x2 | 8 bits | attribute length |
| 0x3 | 8 bits | name length |
| 0x4 | 32 bits | file head |
| 0x8 | 32 bits | file size |
| 0xc | attribute length bytes | system-specific attributes |
| 0xc+a | name length bytes | directory name |
**File head** - Pointer to the block that is the head of the file's CTZ
skip-list.
**File size** - Size of file in bytes.
Here's an example of a file entry:
```
(8 bits) entry type = file (0x11)
(8 bits) entry length = 8 bytes (0x08)
(8 bits) attribute length = 0 bytes (0x00)
(8 bits) name length = 12 bytes (0x03)
(32 bits) file head = 543 (0x0000021f)
(32 bits) file size = 256 KB (0x00040000)
(12 bytes) name = largeavacado
00000000: 11 08 00 0c 1f 02 00 00 00 00 04 00 6c 61 72 67 ............larg
00000010: 65 61 76 61 63 61 64 6f eavacado
```
## Entry attributes
Each dir entry can have up to 256 bytes of system-specific attributes. Since
these attributes are system-specific, they may not be portable between
different systems. For this reason, all attributes must be optional. A minimal
littlefs driver must be able to get away with supporting no attributes at all.
For some level of portability, littlefs has a simple scheme for attributes.
Each attribute is prefixes with an 8-bit type that indicates what the attribute
is. The length of attributes may also be determined from this type. Attributes
in an entry should be sorted based on portability, since attribute parsing
will end when it hits the first attribute it does not understand.
Each system should choose a 4-bit value to prefix all attribute types with to
avoid conflicts with other systems. Additionally, littlefs drivers that support
attributes should provide a "ignore attributes" flag to users in case attribute
conflicts do occur.
Attribute types prefixes with 0x0 and 0xf are currently reserved for future
standard attributes. Standard attributes will be added to this document in
that case.
Here's an example of non-standard time attribute:
```
(8 bits) attribute type = time (0xc1)
(72 bits) time in seconds = 1506286115 (0x0059c81a23)
00000000: c1 23 1a c8 59 00 .#..Y.
```
Here's an example of non-standard permissions attribute:
```
(8 bits) attribute type = permissions (0xc2)
(16 bits) permission bits = rw-rw-r-- (0x01b4)
00000000: c2 b4 01 ...
```
Here's what a dir entry may look like with these attributes:
```
(8 bits) entry type = file (0x11)
(8 bits) entry length = 8 bytes (0x08)
(8 bits) attribute length = 9 bytes (0x09)
(8 bits) name length = 12 bytes (0x0c)
(8 bytes) entry data = 05 00 00 00 20 00 00 00
(8 bits) attribute type = time (0xc1)
(72 bits) time in seconds = 1506286115 (0x0059c81a23)
(8 bits) attribute type = permissions (0xc2)
(16 bits) permission bits = rw-rw-r-- (0x01b4)
(12 bytes) entry name = smallavacado
00000000: 11 08 09 0c 05 00 00 00 20 00 00 00 c1 23 1a c8 ........ ....#..
00000010: 59 00 c2 b4 01 73 6d 61 6c 6c 61 76 61 63 61 64 Y....smallavacad
00000020: 6f o
```

View File

@@ -1,8 +1,19 @@
/*
* Block device emulated on standard files
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the Apache 2.0 license
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "emubd/lfs_emubd.h"
@@ -127,8 +138,8 @@ int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
FILE *f = fopen(emu->path, "r+b");
if (!f && errno != ENOENT) {
return -errno;
if (!f) {
return (errno == EACCES) ? 0 : -errno;
}
// Check that file was erased
@@ -178,14 +189,14 @@ int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block) {
return -errno;
}
if (!err && S_ISREG(st.st_mode)) {
int err = unlink(emu->path);
if (!err && S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode)) {
err = unlink(emu->path);
if (err) {
return -errno;
}
}
if (err || S_ISREG(st.st_mode)) {
if (err || (S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode))) {
FILE *f = fopen(emu->path, "w");
if (!f) {
return -errno;

View File

@@ -1,8 +1,19 @@
/*
* Block device emulated on standard files
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the Apache 2.0 license
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LFS_EMUBD_H
#define LFS_EMUBD_H

1844
lfs.c

File diff suppressed because it is too large Load Diff

177
lfs.h
View File

@@ -1,8 +1,19 @@
/*
* The little filesystem
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the Apache 2.0 license
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LFS_H
#define LFS_H
@@ -11,6 +22,23 @@
#include <stdbool.h>
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_VERSION 0x00010004
#define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
#define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_DISK_VERSION 0x00010002
#define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
#define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >> 0))
/// Definitions ///
// Type definitions
@@ -22,48 +50,78 @@ typedef int32_t lfs_soff_t;
typedef uint32_t lfs_block_t;
// Max name size in bytes
// Maximum inline file size in bytes. Large inline files require a larger
// read and prog cache, but if a file can be inline it does not need its own
// data block. LFS_ATTRS_MAX + LFS_INLINE_MAX must be <= 0xffff. Stored in
// superblock and must be respected by other littlefs drivers.
#ifndef LFS_INLINE_MAX
#define LFS_INLINE_MAX 0x3ff
#endif
// Maximum size of all attributes per file in bytes, may be redefined but a
// a smaller LFS_ATTRS_MAX has no benefit. LFS_ATTRS_MAX + LFS_INLINE_MAX
// must be <= 0xffff. Stored in superblock and must be respected by other
// littlefs drivers.
#ifndef LFS_ATTRS_MAX
#define LFS_ATTRS_MAX 0x3f
#endif
// Max name size in bytes, may be redefined to reduce the size of the
// info struct. Stored in superblock and must be respected by other
// littlefs drivers.
#ifndef LFS_NAME_MAX
#define LFS_NAME_MAX 255
#define LFS_NAME_MAX 0xff
#endif
// Possible error codes, these are negative to allow
// valid positive return values
enum lfs_error {
LFS_ERR_OK = 0, // No error
LFS_ERR_IO = -5, // Error during device operation
LFS_ERR_CORRUPT = -52, // Corrupted
LFS_ERR_NOENT = -2, // No directory entry
LFS_ERR_EXISTS = -17, // Entry already exists
LFS_ERR_NOTDIR = -20, // Entry is not a dir
LFS_ERR_ISDIR = -21, // Entry is a dir
LFS_ERR_INVAL = -22, // Invalid parameter
LFS_ERR_NOSPC = -28, // No space left on device
LFS_ERR_NOMEM = -12, // No more memory available
LFS_ERR_OK = 0, // No error
LFS_ERR_IO = -5, // Error during device operation
LFS_ERR_CORRUPT = -52, // Corrupted
LFS_ERR_NOENT = -2, // No directory entry
LFS_ERR_EXIST = -17, // Entry already exists
LFS_ERR_NOTDIR = -20, // Entry is not a dir
LFS_ERR_ISDIR = -21, // Entry is a dir
LFS_ERR_NOTEMPTY = -39, // Dir is not empty
LFS_ERR_BADF = -9, // Bad file number
LFS_ERR_INVAL = -22, // Invalid parameter
LFS_ERR_NOSPC = -28, // No space left on device
LFS_ERR_NOMEM = -12, // No more memory available
LFS_ERR_NAMETOOLONG = -36, // File name too long
};
// File types
enum lfs_type {
LFS_TYPE_REG = 0x11,
LFS_TYPE_DIR = 0x22,
LFS_TYPE_SUPERBLOCK = 0xe2,
// file type
LFS_TYPE_REG = 0x01,
LFS_TYPE_DIR = 0x02,
LFS_TYPE_SUPERBLOCK = 0x0e,
// on disk structure
LFS_STRUCT_CTZ = 0x10,
LFS_STRUCT_DIR = 0x20,
LFS_STRUCT_INLINE = 0x30,
LFS_STRUCT_MOVED = 0x80,
};
// File open flags
enum lfs_open_flags {
// open flags
LFS_O_RDONLY = 1, // Open a file as read only
LFS_O_WRONLY = 2, // Open a file as write only
LFS_O_RDWR = 3, // Open a file as read and write
LFS_O_CREAT = 0x0100, // Create a file if it does not exist
LFS_O_EXCL = 0x0200, // Fail if a file already exists
LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
LFS_O_APPEND = 0x0800, // Move to end of file on every write
LFS_O_RDONLY = 1, // Open a file as read only
LFS_O_WRONLY = 2, // Open a file as write only
LFS_O_RDWR = 3, // Open a file as read and write
LFS_O_CREAT = 0x0100, // Create a file if it does not exist
LFS_O_EXCL = 0x0200, // Fail if a file already exists
LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
LFS_O_APPEND = 0x0800, // Move to end of file on every write
// internally used flags
LFS_F_DIRTY = 0x10000, // File does not match storage
LFS_F_WRITING = 0x20000, // File has been written since last flush
LFS_F_READING = 0x40000, // File has been read since last flush
LFS_F_DIRTY = 0x010000, // File does not match storage
LFS_F_WRITING = 0x020000, // File has been written since last flush
LFS_F_READING = 0x040000, // File has been read since last flush
LFS_F_ERRED = 0x080000, // An error occured during write
LFS_F_INLINE = 0x100000, // Currently inlined in directory entry
};
// File seek flags
@@ -87,14 +145,14 @@ struct lfs_config {
// Program a region in a block. The block must have previously
// been erased. Negative error codes are propogated to the user.
// The prog function must return LFS_ERR_CORRUPT if the block should
// be considered bad.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*prog)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size);
// Erase a block. A block must be erased before being programmed.
// The state of an erased block is undefined. Negative error codes
// are propogated to the user.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*erase)(const struct lfs_config *c, lfs_block_t block);
// Sync the state of the underlying block device. Negative error codes
@@ -109,11 +167,13 @@ struct lfs_config {
// Minimum size of a block program. This determines the size of program
// buffers. This may be larger than the physical program size to improve
// performance by caching more of the block device.
// Must be a multiple of the read size.
lfs_size_t prog_size;
// Size of an erasable block. This does not impact ram consumption and
// may be larger than the physical erase size. However, this should be
// kept small as each file currently takes up an entire block .
// kept small as each file currently takes up an entire block.
// Must be a multiple of the program size.
lfs_size_t block_size;
// Number of erasable blocks on the device.
@@ -138,6 +198,25 @@ struct lfs_config {
// Optional, statically allocated buffer for files. Must be program sized.
// If enabled, only one file may be opened at a time.
void *file_buffer;
// Optional upper limit on inlined files in bytes. Large inline files
// require a larger read and prog cache, but if a file can be inlined it
// does not need its own data block. Must be smaller than the read size
// and prog size. Defaults to min(LFS_INLINE_MAX, read_size) when zero.
// Stored in superblock and must be respected by other littlefs drivers.
lfs_size_t inline_size;
// Optional upper limit on attributes per file in bytes. No downside for
// larger attributes size but must be less than LFS_ATTRS_MAX. Defaults to
// LFS_ATTRS_MAX when zero.Stored in superblock and must be respected by
// other littlefs drivers.
lfs_size_t attrs_size;
// Optional upper limit on length of file names in bytes. No downside for
// larger names except the size of the info struct which is controlled by
// the LFS_NAME_MAX define. Defaults to LFS_NAME_MAX when zero. Stored in
// superblock and must be respected by other littlefs drivers.
lfs_size_t name_size;
};
@@ -157,6 +236,7 @@ struct lfs_info {
/// littlefs data structures ///
typedef struct lfs_entry {
lfs_off_t off;
lfs_size_t size;
struct lfs_disk_entry {
uint8_t type;
@@ -188,6 +268,7 @@ typedef struct lfs_file {
lfs_size_t size;
uint32_t flags;
lfs_size_t inline_size;
lfs_off_t pos;
lfs_block_t block;
lfs_off_t off;
@@ -195,6 +276,7 @@ typedef struct lfs_file {
} lfs_file_t;
typedef struct lfs_dir {
struct lfs_dir *next;
lfs_block_t pair[2];
lfs_off_t off;
@@ -209,26 +291,25 @@ typedef struct lfs_dir {
} lfs_dir_t;
typedef struct lfs_superblock {
lfs_off_t off;
struct lfs_disk_superblock {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
lfs_block_t root[2];
uint32_t block_size;
uint32_t block_count;
lfs_size_t block_size;
lfs_size_t block_count;
uint32_t version;
char magic[8];
lfs_size_t inline_size;
lfs_size_t attrs_size;
lfs_size_t name_size;
} d;
} lfs_superblock_t;
typedef struct lfs_free {
lfs_block_t end;
lfs_block_t start;
lfs_block_t begin;
lfs_block_t size;
lfs_block_t off;
uint32_t *lookahead;
lfs_block_t ack;
uint32_t *buffer;
} lfs_free_t;
// The littlefs type
@@ -237,12 +318,17 @@ typedef struct lfs {
lfs_block_t root[2];
lfs_file_t *files;
bool deorphaned;
lfs_dir_t *dirs;
lfs_cache_t rcache;
lfs_cache_t pcache;
lfs_free_t free;
bool deorphaned;
lfs_size_t inline_size;
lfs_size_t attrs_size;
lfs_size_t name_size;
} lfs_t;
@@ -347,6 +433,11 @@ lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence);
// Truncates the size of the file to the specified size
//
// Returns a negative error code on failure.
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
// Return the position of the file
//
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)

View File

@@ -1,12 +1,27 @@
/*
* lfs util functions
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the Apache 2.0 license
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs_util.h"
// Only compile if user does not provide custom config
#ifndef LFS_CONFIG
// Software CRC implementation with small lookup table
void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
static const uint32_t rtable[16] = {
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
@@ -23,3 +38,5 @@ void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
}
}
#endif

View File

@@ -1,18 +1,90 @@
/*
* lfs utility functions
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the Apache 2.0 license
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LFS_UTIL_H
#define LFS_UTIL_H
#include <stdlib.h>
// Users can override lfs_util.h with their own configuration by defining
// LFS_CONFIG as a header file to include (-DLFS_CONFIG=lfs_config.h).
//
// If LFS_CONFIG is used, none of the default utils will be emitted and must be
// provided by the config file. To start I would suggest copying lfs_util.h and
// modifying as needed.
#ifdef LFS_CONFIG
#define LFS_STRINGIZE(x) LFS_STRINGIZE2(x)
#define LFS_STRINGIZE2(x) #x
#include LFS_STRINGIZE(LFS_CONFIG)
#else
// System includes
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#ifndef LFS_NO_MALLOC
#include <stdlib.h>
#endif
#ifndef LFS_NO_ASSERT
#include <assert.h>
#endif
#if !defined(LFS_NO_DEBUG) || !defined(LFS_NO_WARN) || !defined(LFS_NO_ERROR)
#include <stdio.h>
#endif
// Builtin functions
// Macros, may be replaced by system specific wrappers. Arguments to these
// macros must not have side-effects as the macros can be removed for a smaller
// code footprint
// Logging functions
#ifndef LFS_NO_DEBUG
#define LFS_DEBUG(fmt, ...) \
printf("lfs debug:%d: " fmt "\n", __LINE__, __VA_ARGS__)
#else
#define LFS_DEBUG(fmt, ...)
#endif
#ifndef LFS_NO_WARN
#define LFS_WARN(fmt, ...) \
printf("lfs warn:%d: " fmt "\n", __LINE__, __VA_ARGS__)
#else
#define LFS_WARN(fmt, ...)
#endif
#ifndef LFS_NO_ERROR
#define LFS_ERROR(fmt, ...) \
printf("lfs error:%d: " fmt "\n", __LINE__, __VA_ARGS__)
#else
#define LFS_ERROR(fmt, ...)
#endif
// Runtime assertions
#ifndef LFS_NO_ASSERT
#define LFS_ASSERT(test) assert(test)
#else
#define LFS_ASSERT(test)
#endif
// Builtin functions, these may be replaced by more efficient
// toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more
// expensive basic C implementation for debugging purposes
// Min/max functions for unsigned 32-bit numbers
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
return (a > b) ? a : b;
}
@@ -21,25 +93,93 @@ static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
return (a < b) ? a : b;
}
static inline uint32_t lfs_ctz(uint32_t a) {
return __builtin_ctz(a);
}
// Find the next smallest power of 2 less than or equal to a
static inline uint32_t lfs_npw2(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
return 32 - __builtin_clz(a-1);
#else
uint32_t r = 0;
uint32_t s;
a -= 1;
s = (a > 0xffff) << 4; a >>= s; r |= s;
s = (a > 0xff ) << 3; a >>= s; r |= s;
s = (a > 0xf ) << 2; a >>= s; r |= s;
s = (a > 0x3 ) << 1; a >>= s; r |= s;
return (r | (a >> 1)) + 1;
#endif
}
// Count the number of trailing binary zeros in a
// lfs_ctz(0) may be undefined
static inline uint32_t lfs_ctz(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__)
return __builtin_ctz(a);
#else
return lfs_npw2((a & -a) + 1) - 1;
#endif
}
// Count the number of binary ones in a
static inline uint32_t lfs_popc(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
return __builtin_popcount(a);
#else
a = a - ((a >> 1) & 0x55555555);
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
#endif
}
// Find the sequence comparison of a and b, this is the distance
// between a and b ignoring overflow
static inline int lfs_scmp(uint32_t a, uint32_t b) {
return (int)(unsigned)(a - b);
}
// Convert from 32-bit little-endian to native order
static inline uint32_t lfs_fromle32(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && ( \
(defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
return a;
#elif !defined(LFS_NO_INTRINSICS) && ( \
(defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
return __builtin_bswap32(a);
#else
return (((uint8_t*)&a)[0] << 0) |
(((uint8_t*)&a)[1] << 8) |
(((uint8_t*)&a)[2] << 16) |
(((uint8_t*)&a)[3] << 24);
#endif
}
// Convert to 32-bit little-endian from native order
static inline uint32_t lfs_tole32(uint32_t a) {
return lfs_fromle32(a);
}
// Calculate CRC-32 with polynomial = 0x04c11db7
void lfs_crc(uint32_t *crc, const void *buffer, size_t size);
// Allocate memory, only used if buffers are not provided to littlefs
static inline void *lfs_malloc(size_t size) {
#ifndef LFS_NO_MALLOC
return malloc(size);
#else
return NULL;
#endif
}
// Logging functions
#define LFS_DEBUG(fmt, ...) printf("lfs debug: " fmt "\n", __VA_ARGS__)
#define LFS_WARN(fmt, ...) printf("lfs warn: " fmt "\n", __VA_ARGS__)
#define LFS_ERROR(fmt, ...) printf("lfs error: " fmt "\n", __VA_ARGS__)
// Deallocate memory, only used if buffers are not provided to littlefs
static inline void lfs_free(void *p) {
#ifndef LFS_NO_MALLOC
free(p);
#endif
}
#endif
#endif

View File

@@ -7,11 +7,11 @@
// test stuff
void test_log(const char *s, uintmax_t v) {{
static void test_log(const char *s, uintmax_t v) {{
printf("%s: %jd\n", s, v);
}}
void test_assert(const char *file, unsigned line,
static void test_assert(const char *file, unsigned line,
const char *s, uintmax_t v, uintmax_t e) {{
static const char *last[6] = {{0, 0}};
if (v != e || !(last[0] == s || last[1] == s ||
@@ -27,8 +27,8 @@ void test_assert(const char *file, unsigned line,
}}
if (v != e) {{
printf("\033[31m%s:%u: assert %s failed, expected %jd\033[0m\n",
file, line, s, e);
fprintf(stderr, "\033[31m%s:%u: assert %s failed with %jd, "
"expected %jd\033[0m\n", file, line, s, v, e);
exit(-2);
}}
}}
@@ -37,7 +37,8 @@ void test_assert(const char *file, unsigned line,
// utility functions for traversals
int test_count(void *p, lfs_block_t b) {{
static int __attribute__((used)) test_count(void *p, lfs_block_t b) {{
(void)b;
unsigned *u = (unsigned*)p;
*u += 1;
return 0;
@@ -58,7 +59,7 @@ lfs_size_t size;
lfs_size_t wsize;
lfs_size_t rsize;
uintmax_t res;
uintmax_t test;
#ifndef LFS_READ_SIZE
#define LFS_READ_SIZE 16
@@ -96,7 +97,7 @@ const struct lfs_config cfg = {{
// Entry point
int main() {{
int main(void) {{
lfs_emubd_create(&cfg, "blocks");
{tests}

View File

@@ -14,22 +14,34 @@ def generate(test):
match = re.match('(?: *\n)*( *)(.*)=>(.*);', line, re.DOTALL | re.MULTILINE)
if match:
tab, test, expect = match.groups()
lines.append(tab+'res = {test};'.format(test=test.strip()))
lines.append(tab+'test_assert("{name}", res, {expect});'.format(
lines.append(tab+'test = {test};'.format(test=test.strip()))
lines.append(tab+'test_assert("{name}", test, {expect});'.format(
name = re.match('\w*', test.strip()).group(),
expect = expect.strip()))
else:
lines.append(line)
# Create test file
with open('test.c', 'w') as file:
file.write(template.format(tests='\n'.join(lines)))
# Remove build artifacts to force rebuild
try:
os.remove('test.o')
os.remove('lfs')
except OSError:
pass
def compile():
os.environ['CFLAGS'] = os.environ.get('CFLAGS', '') + ' -Werror'
subprocess.check_call(['make', '--no-print-directory', '-s'], env=os.environ)
subprocess.check_call([
os.environ.get('MAKE', 'make'),
'--no-print-directory', '-s'])
def execute():
subprocess.check_call(["./lfs"])
if 'EXEC' in os.environ:
subprocess.check_call([os.environ['EXEC'], "./lfs"])
else:
subprocess.check_call(["./lfs"])
def main(test=None):
if test and not test.startswith('-'):

View File

@@ -121,6 +121,7 @@ tests/test.py << TEST
size = strlen("exhaustion");
memcpy(buffer, "exhaustion", size);
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_sync(&lfs, &file[0]) => 0;
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
@@ -142,6 +143,7 @@ tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
size = strlen("exhaustion");
lfs_file_size(&lfs, &file[0]) => size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "exhaustion", size) => 0;
lfs_file_close(&lfs, &file[0]) => 0;
@@ -166,6 +168,7 @@ tests/test.py << TEST
size = strlen("exhaustion");
memcpy(buffer, "exhaustion", size);
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_sync(&lfs, &file[0]) => 0;
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
@@ -187,6 +190,7 @@ tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
size = strlen("exhaustion");
lfs_file_size(&lfs, &file[0]) => size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "exhaustion", size) => 0;
lfs_file_close(&lfs, &file[0]) => 0;
@@ -196,14 +200,14 @@ TEST
echo "--- Dir exhaustion test ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_stat(&lfs, "exhaustion", &info) => 0;
lfs_size_t fullsize = info.size;
lfs_remove(&lfs, "exhaustion") => 0;
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
for (lfs_size_t i = 0; i < fullsize - 2*512; i += size) {
for (lfs_size_t i = 0;
i < (cfg.block_count-6)*(cfg.block_size-8);
i += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_close(&lfs, &file[0]) => 0;
@@ -214,7 +218,11 @@ tests/test.py << TEST
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_APPEND);
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
lfs_file_write(&lfs, &file[0], buffer, size) => size;
for (lfs_size_t i = 0;
i < (cfg.block_size-8);
i += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_close(&lfs, &file[0]) => 0;
lfs_mkdir(&lfs, "exhaustiondir") => LFS_ERR_NOSPC;
@@ -224,14 +232,14 @@ TEST
echo "--- Chained dir exhaustion test ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_stat(&lfs, "exhaustion", &info) => 0;
lfs_size_t fullsize = info.size;
lfs_remove(&lfs, "exhaustion") => 0;
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
for (lfs_size_t i = 0; i < fullsize - 19*512; i += size) {
for (lfs_size_t i = 0;
i < (cfg.block_count-24)*(cfg.block_size-8);
i += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_close(&lfs, &file[0]) => 0;
@@ -247,7 +255,9 @@ tests/test.py << TEST
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
for (lfs_size_t i = 0; i < fullsize - 20*512; i += size) {
for (lfs_size_t i = 0;
i < (cfg.block_count-26)*(cfg.block_size-8);
i += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_close(&lfs, &file[0]) => 0;
@@ -256,6 +266,46 @@ tests/test.py << TEST
lfs_mkdir(&lfs, "exhaustiondir2") => LFS_ERR_NOSPC;
TEST
echo "--- Split dir test ---"
rm -rf blocks
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
// create one block hole for half a directory
lfs_file_open(&lfs, &file[0], "bump", LFS_O_WRONLY | LFS_O_CREAT) => 0;
for (lfs_size_t i = 0; i < cfg.block_size; i += 2) {
memcpy(&buffer[i], "hi", 2);
}
lfs_file_write(&lfs, &file[0], buffer, cfg.block_size) => cfg.block_size;
lfs_file_close(&lfs, &file[0]) => 0;
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
size = strlen("blahblahblahblah");
memcpy(buffer, "blahblahblahblah", size);
for (lfs_size_t i = 0;
i < (cfg.block_count-6)*(cfg.block_size-8);
i += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_close(&lfs, &file[0]) => 0;
// open hole
lfs_remove(&lfs, "bump") => 0;
lfs_mkdir(&lfs, "splitdir") => 0;
lfs_file_open(&lfs, &file[0], "splitdir/bump",
LFS_O_WRONLY | LFS_O_CREAT) => 0;
for (lfs_size_t i = 0; i < cfg.block_size; i += 2) {
memcpy(&buffer[i], "hi", 2);
}
lfs_file_write(&lfs, &file[0], buffer, cfg.block_size) => LFS_ERR_NOSPC;
lfs_file_close(&lfs, &file[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

View File

@@ -73,7 +73,7 @@ lfs_mktree
lfs_chktree
echo "--- Block corruption ---"
for i in {0..33}
for i in {2..33}
do
rm -rf blocks
mkdir blocks
@@ -82,6 +82,17 @@ do
lfs_chktree
done
echo "--- Block persistance ---"
for i in {2..33}
do
rm -rf blocks
mkdir blocks
lfs_mktree
chmod a-w blocks/$(printf '%x' $i) || true
lfs_mktree
lfs_chktree
done
echo "--- Big region corruption ---"
rm -rf blocks
mkdir blocks

View File

@@ -56,7 +56,7 @@ TEST
echo "--- Directory failures ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXISTS;
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXIST;
lfs_dir_open(&lfs, &dir[0], "tomato") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "burito") => LFS_ERR_NOTDIR;
lfs_file_open(&lfs, &file[0], "tomato", LFS_O_RDONLY) => LFS_ERR_NOENT;
@@ -118,16 +118,16 @@ tests/test.py << TEST
sprintf((char*)buffer, "test%d", i);
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, (char*)buffer) => 0;
info.type => LFS_TYPE_DIR;
}
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Directory remove ---"
# TESTING HERE
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_remove(&lfs, "potato") => LFS_ERR_INVAL;
lfs_remove(&lfs, "potato") => LFS_ERR_NOTEMPTY;
lfs_remove(&lfs, "potato/sweet") => 0;
lfs_remove(&lfs, "potato/baked") => 0;
lfs_remove(&lfs, "potato/fried") => 0;
@@ -221,7 +221,7 @@ tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "warmpotato") => 0;
lfs_mkdir(&lfs, "warmpotato/mushy") => 0;
lfs_rename(&lfs, "hotpotato", "warmpotato") => LFS_ERR_INVAL;
lfs_rename(&lfs, "hotpotato", "warmpotato") => LFS_ERR_NOTEMPTY;
lfs_remove(&lfs, "warmpotato/mushy") => 0;
lfs_rename(&lfs, "hotpotato", "warmpotato") => 0;
@@ -256,7 +256,7 @@ tests/test.py << TEST
lfs_rename(&lfs, "warmpotato/baked", "coldpotato/baked") => 0;
lfs_rename(&lfs, "warmpotato/sweet", "coldpotato/sweet") => 0;
lfs_rename(&lfs, "warmpotato/fried", "coldpotato/fried") => 0;
lfs_remove(&lfs, "coldpotato") => LFS_ERR_INVAL;
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
lfs_remove(&lfs, "warmpotato") => 0;
lfs_unmount(&lfs) => 0;
TEST
@@ -283,5 +283,143 @@ tests/test.py << TEST
lfs_unmount(&lfs) => 0;
TEST
echo "--- Recursive remove ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
lfs_dir_open(&lfs, &dir[0], "coldpotato") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
while (true) {
int err = lfs_dir_read(&lfs, &dir[0], &info);
err >= 0 => 1;
if (err == 0) {
break;
}
strcpy((char*)buffer, "coldpotato/");
strcat((char*)buffer, info.name);
lfs_remove(&lfs, (char*)buffer) => 0;
}
lfs_remove(&lfs, "coldpotato") => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "/") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "burito") => 0;
info.type => LFS_TYPE_REG;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "cactus") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Multi-block remove ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_remove(&lfs, "cactus") => LFS_ERR_NOTEMPTY;
for (int i = 0; i < $LARGESIZE; i++) {
sprintf((char*)buffer, "cactus/test%d", i);
lfs_remove(&lfs, (char*)buffer) => 0;
}
lfs_remove(&lfs, "cactus") => 0;
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "/") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "burito") => 0;
info.type => LFS_TYPE_REG;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Multi-block directory with files ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "prickly-pear") => 0;
for (int i = 0; i < $LARGESIZE; i++) {
sprintf((char*)buffer, "prickly-pear/test%d", i);
lfs_file_open(&lfs, &file[0], (char*)buffer,
LFS_O_WRONLY | LFS_O_CREAT) => 0;
size = 6;
memcpy(wbuffer, "Hello", size);
lfs_file_write(&lfs, &file[0], wbuffer, size) => size;
lfs_file_close(&lfs, &file[0]) => 0;
}
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "prickly-pear") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
info.type => LFS_TYPE_DIR;
for (int i = 0; i < $LARGESIZE; i++) {
sprintf((char*)buffer, "test%d", i);
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, (char*)buffer) => 0;
info.type => LFS_TYPE_REG;
info.size => 6;
}
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Multi-block remove with files ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_remove(&lfs, "prickly-pear") => LFS_ERR_NOTEMPTY;
for (int i = 0; i < $LARGESIZE; i++) {
sprintf((char*)buffer, "prickly-pear/test%d", i);
lfs_remove(&lfs, (char*)buffer) => 0;
}
lfs_remove(&lfs, "prickly-pear") => 0;
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "/") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
info.type => LFS_TYPE_DIR;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "burito") => 0;
info.type => LFS_TYPE_REG;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

View File

@@ -34,7 +34,8 @@ tests/test.py << TEST
lfs_size_t chunk = 31;
srand(0);
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "$2", LFS_O_WRONLY | LFS_O_CREAT) => 0;
lfs_file_open(&lfs, &file[0], "$2",
${3:-LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC}) => 0;
for (lfs_size_t i = 0; i < size; i += chunk) {
chunk = (chunk < size - i) ? chunk : size - i;
for (lfs_size_t b = 0; b < chunk; b++) {
@@ -53,7 +54,10 @@ tests/test.py << TEST
lfs_size_t chunk = 29;
srand(0);
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "$2", LFS_O_RDONLY) => 0;
lfs_stat(&lfs, "$2", &info) => 0;
info.type => LFS_TYPE_REG;
info.size => size;
lfs_file_open(&lfs, &file[0], "$2", ${3:-LFS_O_RDONLY}) => 0;
for (lfs_size_t i = 0; i < size; i += chunk) {
chunk = (chunk < size - i) ? chunk : size - i;
lfs_file_read(&lfs, &file[0], buffer, chunk) => chunk;
@@ -78,10 +82,27 @@ echo "--- Large file test ---"
w_test $LARGESIZE largeavacado
r_test $LARGESIZE largeavacado
echo "--- Zero file test ---"
w_test 0 noavacado
r_test 0 noavacado
echo "--- Truncate small test ---"
w_test $SMALLSIZE mediumavacado
r_test $SMALLSIZE mediumavacado
w_test $MEDIUMSIZE mediumavacado
r_test $MEDIUMSIZE mediumavacado
echo "--- Truncate zero test ---"
w_test $SMALLSIZE noavacado
r_test $SMALLSIZE noavacado
w_test 0 noavacado
r_test 0 noavacado
echo "--- Non-overlap check ---"
r_test $SMALLSIZE smallavacado
r_test $MEDIUMSIZE mediumavacado
r_test $LARGESIZE largeavacado
r_test 0 noavacado
echo "--- Dir check ---"
tests/test.py << TEST
@@ -105,10 +126,33 @@ tests/test.py << TEST
strcmp(info.name, "largeavacado") => 0;
info.type => LFS_TYPE_REG;
info.size => $LARGESIZE;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "noavacado") => 0;
info.type => LFS_TYPE_REG;
info.size => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Many file test ---"
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
TEST
tests/test.py << TEST
// Create 300 files of 6 bytes
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "directory") => 0;
for (unsigned i = 0; i < 300; i++) {
snprintf((char*)buffer, sizeof(buffer), "file_%03d", i);
lfs_file_open(&lfs, &file[0], (char*)buffer, LFS_O_WRONLY | LFS_O_CREAT) => 0;
size = 6;
memcpy(wbuffer, "Hello", size);
lfs_file_write(&lfs, &file[0], wbuffer, size) => size;
lfs_file_close(&lfs, &file[0]) => 0;
}
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

View File

@@ -30,20 +30,10 @@ echo "--- Invalid mount ---"
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
TEST
rm blocks/0 blocks/1
rm -f blocks/0 blocks/1
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => LFS_ERR_CORRUPT;
TEST
echo "--- Valid corrupt mount ---"
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
TEST
rm blocks/0
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

236
tests/test_move.sh Executable file
View File

@@ -0,0 +1,236 @@
#!/bin/bash
set -eu
echo "=== Move tests ==="
rm -rf blocks
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "a") => 0;
lfs_mkdir(&lfs, "b") => 0;
lfs_mkdir(&lfs, "c") => 0;
lfs_mkdir(&lfs, "d") => 0;
lfs_mkdir(&lfs, "a/hi") => 0;
lfs_mkdir(&lfs, "a/hi/hola") => 0;
lfs_mkdir(&lfs, "a/hi/bonjour") => 0;
lfs_mkdir(&lfs, "a/hi/ohayo") => 0;
lfs_file_open(&lfs, &file[0], "a/hello", LFS_O_CREAT | LFS_O_WRONLY) => 0;
lfs_file_write(&lfs, &file[0], "hola\n", 5) => 5;
lfs_file_write(&lfs, &file[0], "bonjour\n", 8) => 8;
lfs_file_write(&lfs, &file[0], "ohayo\n", 6) => 6;
lfs_file_close(&lfs, &file[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move file ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "a/hello", "b/hello") => 0;
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "a") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hi") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "b") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hello") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move file corrupt source ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "b/hello", "c/hello") => 0;
lfs_unmount(&lfs) => 0;
TEST
rm -v blocks/7
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "b") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "c") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hello") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move file corrupt source and dest ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "c/hello", "d/hello") => 0;
lfs_unmount(&lfs) => 0;
TEST
rm -v blocks/8
rm -v blocks/a
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "c") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hello") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "d") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move dir ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "a/hi", "b/hi") => 0;
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "a") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "b") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hi") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move dir corrupt source ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "b/hi", "c/hi") => 0;
lfs_unmount(&lfs) => 0;
TEST
rm -v blocks/7
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "b") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "c") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hello") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hi") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move dir corrupt source and dest ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_rename(&lfs, "c/hi", "d/hi") => 0;
lfs_unmount(&lfs) => 0;
TEST
rm -v blocks/9
rm -v blocks/a
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "c") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hello") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hi") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "d") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Move check ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_dir_open(&lfs, &dir[0], "a/hi") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "b/hi") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "d/hi") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "c/hi") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, ".") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "..") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "hola") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "bonjour") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 1;
strcmp(info.name, "ohayo") => 0;
lfs_dir_read(&lfs, &dir[0], &info) => 0;
lfs_dir_close(&lfs, &dir[0]) => 0;
lfs_dir_open(&lfs, &dir[0], "a/hello") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "b/hello") => LFS_ERR_NOENT;
lfs_dir_open(&lfs, &dir[0], "d/hello") => LFS_ERR_NOENT;
lfs_file_open(&lfs, &file[0], "c/hello", LFS_O_RDONLY) => 0;
lfs_file_read(&lfs, &file[0], buffer, 5) => 5;
memcmp(buffer, "hola\n", 5) => 0;
lfs_file_read(&lfs, &file[0], buffer, 8) => 8;
memcmp(buffer, "bonjour\n", 8) => 0;
lfs_file_read(&lfs, &file[0], buffer, 6) => 6;
memcmp(buffer, "ohayo\n", 6) => 0;
lfs_file_close(&lfs, &file[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

View File

@@ -31,6 +31,10 @@ tests/test.py << TEST
strcmp(info.name, "hottea") => 0;
lfs_stat(&lfs, "/tea/hottea", &info) => 0;
strcmp(info.name, "hottea") => 0;
lfs_mkdir(&lfs, "/milk1") => 0;
lfs_stat(&lfs, "/milk1", &info) => 0;
strcmp(info.name, "milk1") => 0;
lfs_unmount(&lfs) => 0;
TEST
@@ -43,6 +47,10 @@ tests/test.py << TEST
strcmp(info.name, "hottea") => 0;
lfs_stat(&lfs, "///tea///hottea", &info) => 0;
strcmp(info.name, "hottea") => 0;
lfs_mkdir(&lfs, "///milk2") => 0;
lfs_stat(&lfs, "///milk2", &info) => 0;
strcmp(info.name, "milk2") => 0;
lfs_unmount(&lfs) => 0;
TEST
@@ -57,6 +65,10 @@ tests/test.py << TEST
strcmp(info.name, "hottea") => 0;
lfs_stat(&lfs, "/./tea/./hottea", &info) => 0;
strcmp(info.name, "hottea") => 0;
lfs_mkdir(&lfs, "/./milk3") => 0;
lfs_stat(&lfs, "/./milk3", &info) => 0;
strcmp(info.name, "milk3") => 0;
lfs_unmount(&lfs) => 0;
TEST
@@ -71,6 +83,10 @@ tests/test.py << TEST
strcmp(info.name, "hottea") => 0;
lfs_stat(&lfs, "coffee/../soda/../tea/hottea", &info) => 0;
strcmp(info.name, "hottea") => 0;
lfs_mkdir(&lfs, "coffee/../milk4") => 0;
lfs_stat(&lfs, "coffee/../milk4", &info) => 0;
strcmp(info.name, "milk4") => 0;
lfs_unmount(&lfs) => 0;
TEST
@@ -79,6 +95,31 @@ tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_stat(&lfs, "coffee/../../../../../../tea/hottea", &info) => 0;
strcmp(info.name, "hottea") => 0;
lfs_mkdir(&lfs, "coffee/../../../../../../milk5") => 0;
lfs_stat(&lfs, "coffee/../../../../../../milk5", &info) => 0;
strcmp(info.name, "milk5") => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Root tests ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_stat(&lfs, "/", &info) => 0;
info.type => LFS_TYPE_DIR;
strcmp(info.name, "/") => 0;
lfs_mkdir(&lfs, "/") => LFS_ERR_EXIST;
lfs_file_open(&lfs, &file[0], "/", LFS_O_WRONLY | LFS_O_CREAT)
=> LFS_ERR_ISDIR;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Sketchy path tests ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_mkdir(&lfs, "dirt/ground") => LFS_ERR_NOENT;
lfs_mkdir(&lfs, "dirt/ground/earth") => LFS_ERR_NOENT;
lfs_unmount(&lfs) => 0;
TEST

View File

@@ -133,15 +133,23 @@ tests/test.py << TEST
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
@@ -174,15 +182,23 @@ tests/test.py << TEST
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
@@ -211,7 +227,7 @@ tests/test.py << TEST
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "doggodogdog", size) => 0;
@@ -219,11 +235,11 @@ tests/test.py << TEST
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "doggodogdog", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
@@ -254,7 +270,7 @@ tests/test.py << TEST
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "doggodogdog", size) => 0;
@@ -262,11 +278,11 @@ tests/test.py << TEST
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "doggodogdog", size) => 0;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
@@ -277,5 +293,69 @@ tests/test.py << TEST
lfs_unmount(&lfs) => 0;
TEST
echo "--- Boundary seek and write ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
size = strlen("hedgehoghog");
const lfs_soff_t offsets[] = {512, 1020, 513, 1021, 511, 1019};
for (int i = 0; i < sizeof(offsets) / sizeof(offsets[0]); i++) {
lfs_soff_t off = offsets[i];
memcpy(buffer, "hedgehoghog", size);
lfs_file_seek(&lfs, &file[0], off, LFS_SEEK_SET) => off;
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_seek(&lfs, &file[0], off, LFS_SEEK_SET) => off;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "hedgehoghog", size) => 0;
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_SET) => 0;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "kittycatcat", size) => 0;
lfs_file_sync(&lfs, &file[0]) => 0;
}
lfs_file_close(&lfs, &file[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Out-of-bounds seek ---"
tests/test.py << TEST
lfs_mount(&lfs, &cfg) => 0;
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
size = strlen("kittycatcat");
lfs_file_size(&lfs, &file[0]) => $LARGESIZE*size;
lfs_file_seek(&lfs, &file[0], ($LARGESIZE+$SMALLSIZE)*size,
LFS_SEEK_SET) => ($LARGESIZE+$SMALLSIZE)*size;
lfs_file_read(&lfs, &file[0], buffer, size) => 0;
memcpy(buffer, "porcupineee", size);
lfs_file_write(&lfs, &file[0], buffer, size) => size;
lfs_file_seek(&lfs, &file[0], ($LARGESIZE+$SMALLSIZE)*size,
LFS_SEEK_SET) => ($LARGESIZE+$SMALLSIZE)*size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "porcupineee", size) => 0;
lfs_file_seek(&lfs, &file[0], $LARGESIZE*size,
LFS_SEEK_SET) => $LARGESIZE*size;
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "\0\0\0\0\0\0\0\0\0\0\0", size) => 0;
lfs_file_seek(&lfs, &file[0], -(($LARGESIZE+$SMALLSIZE)*size),
LFS_SEEK_CUR) => LFS_ERR_INVAL;
lfs_file_tell(&lfs, &file[0]) => ($LARGESIZE+1)*size;
lfs_file_seek(&lfs, &file[0], -(($LARGESIZE+2*$SMALLSIZE)*size),
LFS_SEEK_END) => LFS_ERR_INVAL;
lfs_file_tell(&lfs, &file[0]) => ($LARGESIZE+1)*size;
lfs_file_close(&lfs, &file[0]) => 0;
lfs_unmount(&lfs) => 0;
TEST
echo "--- Results ---"
tests/stats.py

158
tests/test_truncate.sh Executable file
View File

@@ -0,0 +1,158 @@
#!/bin/bash
set -eu
SMALLSIZE=32
MEDIUMSIZE=2048
LARGESIZE=8192
echo "=== Truncate tests ==="
rm -rf blocks
tests/test.py << TEST
lfs_format(&lfs, &cfg) => 0;
TEST
truncate_test() {
STARTSIZES="$1"
STARTSEEKS="$2"
HOTSIZES="$3"
COLDSIZES="$4"
tests/test.py << TEST
static const lfs_off_t startsizes[] = {$STARTSIZES};
static const lfs_off_t startseeks[] = {$STARTSEEKS};
static const lfs_off_t hotsizes[] = {$HOTSIZES};
lfs_mount(&lfs, &cfg) => 0;
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
sprintf((char*)buffer, "hairyhead%d", i);
lfs_file_open(&lfs, &file[0], (const char*)buffer,
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC) => 0;
strcpy((char*)buffer, "hair");
size = strlen((char*)buffer);
for (int j = 0; j < startsizes[i]; j += size) {
lfs_file_write(&lfs, &file[0], buffer, size) => size;
}
lfs_file_size(&lfs, &file[0]) => startsizes[i];
if (startseeks[i] != startsizes[i]) {
lfs_file_seek(&lfs, &file[0],
startseeks[i], LFS_SEEK_SET) => startseeks[i];
}
lfs_file_truncate(&lfs, &file[0], hotsizes[i]) => 0;
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
lfs_file_close(&lfs, &file[0]) => 0;
}
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
static const lfs_off_t startsizes[] = {$STARTSIZES};
static const lfs_off_t hotsizes[] = {$HOTSIZES};
static const lfs_off_t coldsizes[] = {$COLDSIZES};
lfs_mount(&lfs, &cfg) => 0;
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
sprintf((char*)buffer, "hairyhead%d", i);
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDWR) => 0;
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
size = strlen("hair");
int j = 0;
for (; j < startsizes[i] && j < hotsizes[i]; j += size) {
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "hair", size) => 0;
}
for (; j < hotsizes[i]; j += size) {
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "\0\0\0\0", size) => 0;
}
lfs_file_truncate(&lfs, &file[0], coldsizes[i]) => 0;
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
lfs_file_close(&lfs, &file[0]) => 0;
}
lfs_unmount(&lfs) => 0;
TEST
tests/test.py << TEST
static const lfs_off_t startsizes[] = {$STARTSIZES};
static const lfs_off_t hotsizes[] = {$HOTSIZES};
static const lfs_off_t coldsizes[] = {$COLDSIZES};
lfs_mount(&lfs, &cfg) => 0;
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
sprintf((char*)buffer, "hairyhead%d", i);
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDONLY) => 0;
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
size = strlen("hair");
int j = 0;
for (; j < startsizes[i] && j < hotsizes[i] && j < coldsizes[i];
j += size) {
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "hair", size) => 0;
}
for (; j < coldsizes[i]; j += size) {
lfs_file_read(&lfs, &file[0], buffer, size) => size;
memcmp(buffer, "\0\0\0\0", size) => 0;
}
lfs_file_close(&lfs, &file[0]) => 0;
}
lfs_unmount(&lfs) => 0;
TEST
}
echo "--- Cold shrinking truncate ---"
truncate_test \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE"
echo "--- Cold expanding truncate ---"
truncate_test \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
echo "--- Warm shrinking truncate ---"
truncate_test \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, 0, 0, 0, 0"
echo "--- Warm expanding truncate ---"
truncate_test \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
echo "--- Mid-file shrinking truncate ---"
truncate_test \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
" $LARGESIZE, $LARGESIZE, $LARGESIZE, $LARGESIZE, $LARGESIZE" \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, 0, 0, 0, 0"
echo "--- Mid-file expanding truncate ---"
truncate_test \
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
" 0, 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
echo "--- Results ---"
tests/stats.py