mirror of
https://github.com/eledio-devices/thirdparty-littlefs.git
synced 2025-11-01 16:14:13 +01:00
Compare commits
41 Commits
v1.0
...
big-endian
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ebc0d24211 | ||
|
|
dbce53672b | ||
|
|
d88f0ac02f | ||
|
|
2ad435ed63 | ||
|
|
1fb6a19520 | ||
|
|
db8872781a | ||
|
|
c2fab8fabb | ||
|
|
472ccc4203 | ||
|
|
aea3d3db46 | ||
|
|
be22d3449f | ||
|
|
425aa3c694 | ||
|
|
5ee20e8d77 | ||
|
|
bf78b09d37 | ||
|
|
e169d06c57 | ||
|
|
996cd8af22 | ||
|
|
78c79ecb9e | ||
|
|
f9f4f5ccec | ||
|
|
843e3c6c75 | ||
|
|
2612e1b3fa | ||
|
|
6664723e18 | ||
|
|
3f31c8cba3 | ||
|
|
f4aeb8331a | ||
|
|
db51a395ba | ||
|
|
2ab150cc50 | ||
|
|
0825d34f3d | ||
|
|
46e22b2a38 | ||
|
|
4fdca15a0d | ||
|
|
454b588f73 | ||
|
|
f3578e3250 | ||
|
|
83d4c614a0 | ||
|
|
539409e2fb | ||
|
|
2936514b5e | ||
|
|
ac9766ee39 | ||
|
|
9db1a86498 | ||
|
|
984340225b | ||
|
|
273cb7c9c8 | ||
|
|
d9367e05ce | ||
|
|
a83b2fe463 | ||
|
|
a8fa5e6571 | ||
|
|
26dd49aa04 | ||
|
|
0982020fb3 |
39
.travis.yml
39
.travis.yml
@@ -9,6 +9,39 @@ script:
|
||||
-include stdio.h -Werror' make all size
|
||||
|
||||
# run tests
|
||||
- CFLAGS="-DLFS_READ_SIZE=16 -DLFS_PROG_SIZE=16" make test
|
||||
- CFLAGS="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1" make test
|
||||
- CFLAGS="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512" make test
|
||||
- make test QUIET=1
|
||||
|
||||
# run tests with a few different configurations
|
||||
- CFLAGS="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1" make test QUIET=1
|
||||
- CFLAGS="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512" make test QUIET=1
|
||||
- CFLAGS="-DLFS_BLOCK_COUNT=1023 -DLFS_LOOKAHEAD=2048" make test QUIET=1
|
||||
|
||||
# self-host with littlefs-fuse for fuzz test
|
||||
- make -C littlefs-fuse
|
||||
|
||||
- littlefs-fuse/lfs --format /dev/loop0
|
||||
- littlefs-fuse/lfs /dev/loop0 mount
|
||||
|
||||
- ls mount
|
||||
- mkdir mount/littlefs
|
||||
- cp -r $(git ls-tree --name-only HEAD) mount/littlefs
|
||||
- cd mount/littlefs
|
||||
- ls
|
||||
- make -B test_dirs test_files QUIET=1
|
||||
|
||||
before_install:
|
||||
- fusermount -V
|
||||
- gcc --version
|
||||
|
||||
install:
|
||||
- sudo apt-get install libfuse-dev
|
||||
- git clone --depth 1 https://github.com/geky/littlefs-fuse
|
||||
|
||||
before_script:
|
||||
- rm -rf littlefs-fuse/littlefs/*
|
||||
- cp -r $(git ls-tree --name-only HEAD) littlefs-fuse/littlefs
|
||||
|
||||
- mkdir mount
|
||||
- sudo chmod a+rw /dev/loop0
|
||||
- dd if=/dev/zero bs=512 count=2048 of=disk
|
||||
- losetup /dev/loop0 disk
|
||||
|
||||
413
DESIGN.md
413
DESIGN.md
@@ -1,6 +1,6 @@
|
||||
## The design of the little filesystem
|
||||
|
||||
The littlefs is a little fail-safe filesystem designed for embedded systems.
|
||||
A little fail-safe filesystem designed for embedded systems.
|
||||
|
||||
```
|
||||
| | | .---._____
|
||||
@@ -16,9 +16,9 @@ more about filesystem design by tackling the relative unsolved problem of
|
||||
managing a robust filesystem resilient to power loss on devices
|
||||
with limited RAM and ROM.
|
||||
|
||||
The embedded systems the littlefs is targeting are usually 32bit
|
||||
microcontrollers with around 32Kbytes of RAM and 512Kbytes of ROM. These are
|
||||
often paired with SPI NOR flash chips with about 4Mbytes of flash storage.
|
||||
The embedded systems the littlefs is targeting are usually 32 bit
|
||||
microcontrollers with around 32KB of RAM and 512KB of ROM. These are
|
||||
often paired with SPI NOR flash chips with about 4MB of flash storage.
|
||||
|
||||
Flash itself is a very interesting piece of technology with quite a bit of
|
||||
nuance. Unlike most other forms of storage, writing to flash requires two
|
||||
@@ -32,17 +32,17 @@ has more information if you are interesting in how this works.
|
||||
This leaves us with an interesting set of limitations that can be simplified
|
||||
to three strong requirements:
|
||||
|
||||
1. **Fail-safe** - This is actually the main goal of the littlefs and the focus
|
||||
of this project. Embedded systems are usually designed without a shutdown
|
||||
routine and a notable lack of user interface for recovery, so filesystems
|
||||
targeting embedded systems should be prepared to lose power an any given
|
||||
time.
|
||||
1. **Power-loss resilient** - This is the main goal of the littlefs and the
|
||||
focus of this project. Embedded systems are usually designed without a
|
||||
shutdown routine and a notable lack of user interface for recovery, so
|
||||
filesystems targeting embedded systems must be prepared to lose power an
|
||||
any given time.
|
||||
|
||||
Despite this state of things, there are very few embedded filesystems that
|
||||
handle power loss in a reasonable manner, and can become corrupted if the
|
||||
user is unlucky enough.
|
||||
handle power loss in a reasonable manner, and most can become corrupted if
|
||||
the user is unlucky enough.
|
||||
|
||||
2. **Wear awareness** - Due to the destructive nature of flash, most flash
|
||||
2. **Wear leveling** - Due to the destructive nature of flash, most flash
|
||||
chips have a limited number of erase cycles, usually in the order of around
|
||||
100,000 erases per block for NOR flash. Filesystems that don't take wear
|
||||
into account can easily burn through blocks used to store frequently updated
|
||||
@@ -78,9 +78,9 @@ summary of the general ideas behind some of them.
|
||||
Most of the existing filesystems fall into the one big category of filesystem
|
||||
designed in the early days of spinny magnet disks. While there is a vast amount
|
||||
of interesting technology and ideas in this area, the nature of spinny magnet
|
||||
disks encourage properties such as grouping writes near each other, that don't
|
||||
disks encourage properties, such as grouping writes near each other, that don't
|
||||
make as much sense on recent storage types. For instance, on flash, write
|
||||
locality is not as important and can actually increase wear destructively.
|
||||
locality is not important and can actually increase wear destructively.
|
||||
|
||||
One of the most popular designs for flash filesystems is called the
|
||||
[logging filesystem](https://en.wikipedia.org/wiki/Log-structured_file_system).
|
||||
@@ -97,8 +97,7 @@ scaling as the size of storage increases. And most filesystems compensate by
|
||||
caching large parts of the filesystem in RAM, a strategy that is unavailable
|
||||
for embedded systems.
|
||||
|
||||
Another interesting filesystem design technique that the littlefs borrows the
|
||||
most from, is the [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
|
||||
Another interesting filesystem design technique is that of [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
|
||||
A good example of this is the [btrfs](https://en.wikipedia.org/wiki/Btrfs)
|
||||
filesystem. COW filesystems can easily recover from corrupted blocks and have
|
||||
natural protection against power loss. However, if they are not designed with
|
||||
@@ -150,12 +149,12 @@ check our checksum we notice that block 1 was corrupted. So we fall back to
|
||||
block 2 and use the value 9.
|
||||
|
||||
Using this concept, the littlefs is able to update metadata blocks atomically.
|
||||
There are a few other tweaks, such as using a 32bit crc and using sequence
|
||||
There are a few other tweaks, such as using a 32 bit crc and using sequence
|
||||
arithmetic to handle revision count overflow, but the basic concept
|
||||
is the same. These metadata pairs define the backbone of the littlefs, and the
|
||||
rest of the filesystem is built on top of these atomic updates.
|
||||
|
||||
## Files
|
||||
## Non-meta data
|
||||
|
||||
Now, the metadata pairs do come with some drawbacks. Most notably, each pair
|
||||
requires two blocks for each block of data. I'm sure users would be very
|
||||
@@ -200,7 +199,7 @@ Now we could just leave files here, copying the entire file on write
|
||||
provides the synchronization without the duplicated memory requirements
|
||||
of the metadata blocks. However, we can do a bit better.
|
||||
|
||||
## CTZ linked-lists
|
||||
## CTZ skip-lists
|
||||
|
||||
There are many different data structures for representing the actual
|
||||
files in filesystems. Of these, the littlefs uses a rather unique [COW](https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg)
|
||||
@@ -224,12 +223,12 @@ Exhibit A: A linked-list
|
||||
|
||||
To get around this, the littlefs, at its heart, stores files backwards. Each
|
||||
block points to its predecessor, with the first block containing no pointers.
|
||||
If you think about this, it makes a bit of sense. Appending blocks just point
|
||||
to their predecessor and no other blocks need to be updated. If we update
|
||||
a block in the middle, we will need to copy out the blocks that follow,
|
||||
but can reuse the blocks before the modified block. Since most file operations
|
||||
either reset the file each write or append to files, this design avoids
|
||||
copying the file in the most common cases.
|
||||
If you think about for a while, it starts to make a bit of sense. Appending
|
||||
blocks just point to their predecessor and no other blocks need to be updated.
|
||||
If we update a block in the middle, we will need to copy out the blocks that
|
||||
follow, but can reuse the blocks before the modified block. Since most file
|
||||
operations either reset the file each write or append to files, this design
|
||||
avoids copying the file in the most common cases.
|
||||
|
||||
```
|
||||
Exhibit B: A backwards linked-list
|
||||
@@ -246,19 +245,19 @@ runtime to just _read_ a file? That's awful. Keep in mind reading files are
|
||||
usually the most common filesystem operation.
|
||||
|
||||
To avoid this problem, the littlefs uses a multilayered linked-list. For
|
||||
every block that is divisible by a power of two, the block contains an
|
||||
additional pointer that points back by that power of two. Another way of
|
||||
thinking about this design is that there are actually many linked-lists
|
||||
threaded together, with each linked-lists skipping an increasing number
|
||||
of blocks. If you're familiar with data-structures, you may have also
|
||||
recognized that this is a deterministic skip-list.
|
||||
every nth block where n is divisible by 2^x, the block contains a pointer
|
||||
to block n-2^x. So each block contains anywhere from 1 to log2(n) pointers
|
||||
that skip to various sections of the preceding list. If you're familiar with
|
||||
data-structures, you may have recognized that this is a type of deterministic
|
||||
skip-list.
|
||||
|
||||
To find the power of two factors efficiently, we can use the instruction
|
||||
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros),
|
||||
which is where this linked-list's name comes from.
|
||||
The name comes from the use of the
|
||||
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros)
|
||||
instruction, which allows us to calculate the power-of-two factors efficiently.
|
||||
For a given block n, the block contains ctz(n)+1 pointers.
|
||||
|
||||
```
|
||||
Exhibit C: A backwards CTZ linked-list
|
||||
Exhibit C: A backwards CTZ skip-list
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |<-| data 4 |<-| data 5 |
|
||||
| |<-| |--| |<-| |--| | | |
|
||||
@@ -266,6 +265,9 @@ Exhibit C: A backwards CTZ linked-list
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
The additional pointers allow us to navigate the data-structure on disk
|
||||
much more efficiently than in a single linked-list.
|
||||
|
||||
Taking exhibit C for example, here is the path from data block 5 to data
|
||||
block 1. You can see how data block 3 was completely skipped:
|
||||
```
|
||||
@@ -285,15 +287,133 @@ The path to data block 0 is even more quick, requiring only two jumps:
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
The CTZ linked-list has quite a few interesting properties. All of the pointers
|
||||
in the block can be found by just knowing the index in the list of the current
|
||||
block, and, with a bit of math, the amortized overhead for the linked-list is
|
||||
only two pointers per block. Most importantly, the CTZ linked-list has a
|
||||
worst case lookup runtime of O(logn), which brings the runtime of reading a
|
||||
file down to O(n logn). Given that the constant runtime is divided by the
|
||||
amount of data we can store in a block, this is pretty reasonable.
|
||||
We can find the runtime complexity by looking at the path to any block from
|
||||
the block containing the most pointers. Every step along the path divides
|
||||
the search space for the block in half. This gives us a runtime of O(logn).
|
||||
To get to the block with the most pointers, we can perform the same steps
|
||||
backwards, which puts the runtime at O(2logn) = O(logn). The interesting
|
||||
part about this data structure is that this optimal path occurs naturally
|
||||
if we greedily choose the pointer that covers the most distance without passing
|
||||
our target block.
|
||||
|
||||
Here is what it might look like to update a file stored with a CTZ linked-list:
|
||||
So now we have a representation of files that can be appended trivially with
|
||||
a runtime of O(1), and can be read with a worst case runtime of O(nlogn).
|
||||
Given that the the runtime is also divided by the amount of data we can store
|
||||
in a block, this is pretty reasonable.
|
||||
|
||||
Unfortunately, the CTZ skip-list comes with a few questions that aren't
|
||||
straightforward to answer. What is the overhead? How do we handle more
|
||||
pointers than we can store in a block? How do we store the skip-list in
|
||||
a directory entry?
|
||||
|
||||
One way to find the overhead per block is to look at the data structure as
|
||||
multiple layers of linked-lists. Each linked-list skips twice as many blocks
|
||||
as the previous linked-list. Another way of looking at it is that each
|
||||
linked-list uses half as much storage per block as the previous linked-list.
|
||||
As we approach infinity, the number of pointers per block forms a geometric
|
||||
series. Solving this geometric series gives us an average of only 2 pointers
|
||||
per block.
|
||||
|
||||

|
||||
|
||||
Finding the maximum number of pointers in a block is a bit more complicated,
|
||||
but since our file size is limited by the integer width we use to store the
|
||||
size, we can solve for it. Setting the overhead of the maximum pointers equal
|
||||
to the block size we get the following equation. Note that a smaller block size
|
||||
results in more pointers, and a larger word width results in larger pointers.
|
||||
|
||||

|
||||
|
||||
where:
|
||||
B = block size in bytes
|
||||
w = word width in bits
|
||||
|
||||
Solving the equation for B gives us the minimum block size for various word
|
||||
widths:
|
||||
32 bit CTZ skip-list = minimum block size of 104 bytes
|
||||
64 bit CTZ skip-list = minimum block size of 448 bytes
|
||||
|
||||
Since littlefs uses a 32 bit word size, we are limited to a minimum block
|
||||
size of 104 bytes. This is a perfectly reasonable minimum block size, with most
|
||||
block sizes starting around 512 bytes. So we can avoid additional logic to
|
||||
avoid overflowing our block's capacity in the CTZ skip-list.
|
||||
|
||||
So, how do we store the skip-list in a directory entry? A naive approach would
|
||||
be to store a pointer to the head of the skip-list, the length of the file
|
||||
in bytes, the index of the head block in the skip-list, and the offset in the
|
||||
head block in bytes. However this is a lot of information, and we can observe
|
||||
that a file size maps to only one block index + offset pair. So it should be
|
||||
sufficient to store only the pointer and file size.
|
||||
|
||||
But there is one problem, calculating the block index + offset pair from a
|
||||
file size doesn't have an obvious implementation.
|
||||
|
||||
We can start by just writing down an equation. The first idea that comes to
|
||||
mind is to just use a for loop to sum together blocks until we reach our
|
||||
file size. We can write this equation as a summation:
|
||||
|
||||

|
||||
|
||||
where:
|
||||
B = block size in bytes
|
||||
w = word width in bits
|
||||
n = block index in skip-list
|
||||
N = file size in bytes
|
||||
|
||||
And this works quite well, but is not trivial to calculate. This equation
|
||||
requires O(n) to compute, which brings the entire runtime of reading a file
|
||||
to O(n^2logn). Fortunately, the additional O(n) does not need to touch disk,
|
||||
so it is not completely unreasonable. But if we could solve this equation into
|
||||
a form that is easily computable, we can avoid a big slowdown.
|
||||
|
||||
Unfortunately, the summation of the CTZ instruction presents a big challenge.
|
||||
How would you even begin to reason about integrating a bitwise instruction?
|
||||
Fortunately, there is a powerful tool I've found useful in these situations:
|
||||
The [On-Line Encyclopedia of Integer Sequences (OEIS)](https://oeis.org/).
|
||||
If we work out the first couple of values in our summation, we find that CTZ
|
||||
maps to [A001511](https://oeis.org/A001511), and its partial summation maps
|
||||
to [A005187](https://oeis.org/A005187), and surprisingly, both of these
|
||||
sequences have relatively trivial equations! This leads us to a rather
|
||||
unintuitive property:
|
||||
|
||||

|
||||
|
||||
where:
|
||||
ctz(i) = the number of trailing bits that are 0 in i
|
||||
popcount(i) = the number of bits that are 1 in i
|
||||
|
||||
It's a bit bewildering that these two seemingly unrelated bitwise instructions
|
||||
are related by this property. But if we start to disect this equation we can
|
||||
see that it does hold. As n approaches infinity, we do end up with an average
|
||||
overhead of 2 pointers as we find earlier. And popcount seems to handle the
|
||||
error from this average as it accumulates in the CTZ skip-list.
|
||||
|
||||
Now we can substitute into the original equation to get a trivial equation
|
||||
for a file size:
|
||||
|
||||

|
||||
|
||||
Unfortunately, we're not quite done. The popcount function is non-injective,
|
||||
so we can only find the file size from the block index, not the other way
|
||||
around. However, we can solve for an n' block index that is greater than n
|
||||
with an error bounded by the range of the popcount function. We can then
|
||||
repeatedly substitute this n' into the original equation until the error
|
||||
is smaller than the integer division. As it turns out, we only need to
|
||||
perform this substitution once. Now we directly calculate our block index:
|
||||
|
||||

|
||||
|
||||
Now that we have our block index n, we can just plug it back into the above
|
||||
equation to find the offset. However, we do need to rearrange the equation
|
||||
a bit to avoid integer overflow:
|
||||
|
||||

|
||||
|
||||
The solution involves quite a bit of math, but computers are very good at math.
|
||||
We can now solve for the block index + offset while only needed to store the
|
||||
file size in O(1).
|
||||
|
||||
Here is what it might look like to update a file stored with a CTZ skip-list:
|
||||
```
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
@@ -367,7 +487,7 @@ v
|
||||
## Block allocation
|
||||
|
||||
So those two ideas provide the grounds for the filesystem. The metadata pairs
|
||||
give us directories, and the CTZ linked-lists give us files. But this leaves
|
||||
give us directories, and the CTZ skip-lists give us files. But this leaves
|
||||
one big [elephant](https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg)
|
||||
of a question. How do we get those blocks in the first place?
|
||||
|
||||
@@ -653,9 +773,17 @@ deorphan step that simply iterates through every directory in the linked-list
|
||||
and checks it against every directory entry in the filesystem to see if it
|
||||
has a parent. The deorphan step occurs on the first block allocation after
|
||||
boot, so orphans should never cause the littlefs to run out of storage
|
||||
prematurely.
|
||||
prematurely. Note that the deorphan step never needs to run in a readonly
|
||||
filesystem.
|
||||
|
||||
And for my final trick, moving a directory:
|
||||
## The move problem
|
||||
|
||||
Now we have a real problem. How do we move things between directories while
|
||||
remaining power resilient? Even looking at the problem from a high level,
|
||||
it seems impossible. We can update directory blocks atomically, but atomically
|
||||
updating two independent directory blocks is not an atomic operation.
|
||||
|
||||
Here's the steps the filesystem may go through to move a directory:
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
@@ -716,18 +844,135 @@ v
|
||||
'--------'
|
||||
```
|
||||
|
||||
Note that once again we don't care about the ordering of directories in the
|
||||
linked-list, so we can simply leave directories in their old positions. This
|
||||
does make the diagrams a bit hard to draw, but the littlefs doesn't really
|
||||
care.
|
||||
We can leave any orphans up to the deorphan step to collect, but that doesn't
|
||||
help the case where dir A has both dir B and the root dir as parents if we
|
||||
lose power inconveniently.
|
||||
|
||||
It's also worth noting that once again we have an operation that isn't actually
|
||||
atomic. After we add directory A to directory B, we could lose power, leaving
|
||||
directory A as a part of both the root directory and directory B. However,
|
||||
there isn't anything inherent to the littlefs that prevents a directory from
|
||||
having multiple parents, so in this case, we just allow that to happen. Extra
|
||||
care is taken to only remove a directory from the linked-list if there are
|
||||
no parents left in the filesystem.
|
||||
Initially, you might think this is fine. Dir A _might_ end up with two parents,
|
||||
but the filesystem will still work as intended. But then this raises the
|
||||
question of what do we do when the dir A wears out? For other directory blocks
|
||||
we can update the parent pointer, but for a dir with two parents we would need
|
||||
work out how to update both parents. And the check for multiple parents would
|
||||
need to be carried out for every directory, even if the directory has never
|
||||
been moved.
|
||||
|
||||
It also presents a bad user-experience, since the condition of ending up with
|
||||
two parents is rare, it's unlikely user-level code will be prepared. Just think
|
||||
about how a user would recover from a multi-parented directory. They can't just
|
||||
remove one directory, since remove would report the directory as "not empty".
|
||||
|
||||
Other atomic filesystems simple COW the entire directory tree. But this
|
||||
introduces a significant bit of complexity, which leads to code size, along
|
||||
with a surprisingly expensive runtime cost during what most users assume is
|
||||
a single pointer update.
|
||||
|
||||
Another option is to update the directory block we're moving from to point
|
||||
to the destination with a sort of predicate that we have moved if the
|
||||
destination exists. Unfortunately, the omnipresent concern of wear could
|
||||
cause any of these directory entries to change blocks, and changing the
|
||||
entry size before a move introduces complications if it spills out of
|
||||
the current directory block.
|
||||
|
||||
So how do we go about moving a directory atomically?
|
||||
|
||||
We rely on the improbableness of power loss.
|
||||
|
||||
Power loss during a move is certainly possible, but it's actually relatively
|
||||
rare. Unless a device is writing to a filesystem constantly, it's unlikely that
|
||||
a power loss will occur during filesystem activity. We still need to handle
|
||||
the condition, but runtime during a power loss takes a back seat to the runtime
|
||||
during normal operations.
|
||||
|
||||
So what littlefs does is unelegantly simple. When littlefs moves a file, it
|
||||
marks the file as "moving". This is stored as a single bit in the directory
|
||||
entry and doesn't take up much space. Then littlefs moves the directory,
|
||||
finishing with the complete remove of the "moving" directory entry.
|
||||
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir B |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
|
||||
| update root directory to mark directory A as moving
|
||||
v
|
||||
|
||||
.----------.
|
||||
|root dir |-.
|
||||
| pair 0 | |
|
||||
.-------| moving A!|-'
|
||||
| '----------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir B |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
|
||||
| update directory B to point to directory A
|
||||
v
|
||||
|
||||
.----------.
|
||||
|root dir |-.
|
||||
| pair 0 | |
|
||||
.-------| moving A!|-'
|
||||
| '----------'
|
||||
| .-----' '-.
|
||||
| | v
|
||||
| | .--------.
|
||||
| | .->| dir B |
|
||||
| | | | pair 0 |
|
||||
| | | | |
|
||||
| | | '--------'
|
||||
| | .-------'
|
||||
| v v |
|
||||
| .--------. |
|
||||
'->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
|
||||
| update root to no longer contain directory A
|
||||
v
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.----| |-'
|
||||
| '--------'
|
||||
| |
|
||||
| v
|
||||
| .--------.
|
||||
| .->| dir B |
|
||||
| | | pair 0 |
|
||||
| '--| |-.
|
||||
| '--------' |
|
||||
| | |
|
||||
| v |
|
||||
| .--------. |
|
||||
'--->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
```
|
||||
|
||||
Now, if we run into a directory entry that has been marked as "moved", one
|
||||
of two things is possible. Either the directory entry exists elsewhere in the
|
||||
filesystem, or it doesn't. This is a O(n) operation, but only occurs in the
|
||||
unlikely case we lost power during a move.
|
||||
|
||||
And we can easily fix the "moved" directory entry. Since we're already scanning
|
||||
the filesystem during the deorphan step, we can also check for moved entries.
|
||||
If we find one, we either remove the "moved" marking or remove the whole entry
|
||||
if it exists elsewhere in the filesystem.
|
||||
|
||||
## Wear awareness
|
||||
|
||||
@@ -908,21 +1153,26 @@ develops errors and needs to be moved.
|
||||
|
||||
The second concern for the littlefs, is that blocks in the filesystem may wear
|
||||
unevenly. In this situation, a filesystem may meet an early demise where
|
||||
there are no more non-corrupted blocks that aren't in use. It may be entirely
|
||||
possible that files were written once and left unmodified, wasting the
|
||||
potential erase cycles of the blocks it sits on.
|
||||
there are no more non-corrupted blocks that aren't in use. It's common to
|
||||
have files that were written once and left unmodified, wasting the potential
|
||||
erase cycles of the blocks it sits on.
|
||||
|
||||
Wear leveling is a term that describes distributing block writes evenly to
|
||||
avoid the early termination of a flash part. There are typically two levels
|
||||
of wear leveling:
|
||||
1. Dynamic wear leveling - Blocks are distributed evenly during blocks writes.
|
||||
Note that the issue with write-once files still exists in this case.
|
||||
2. Static wear leveling - Unmodified blocks are evicted for new block writes.
|
||||
This provides the longest lifetime for a flash device.
|
||||
1. Dynamic wear leveling - Wear is distributed evenly across all **dynamic**
|
||||
blocks. Usually this is accomplished by simply choosing the unused block
|
||||
with the lowest amount of wear. Note this does not solve the problem of
|
||||
static data.
|
||||
2. Static wear leveling - Wear is distributed evenly across all **dynamic**
|
||||
and **static** blocks. Unmodified blocks may be evicted for new block
|
||||
writes. This does handle the problem of static data but may lead to
|
||||
wear amplification.
|
||||
|
||||
Now, it's possible to use the revision count on metadata pairs to approximate
|
||||
the wear of a metadata block. And combined with the COW nature of files, the
|
||||
littlefs could provide a form of dynamic wear leveling.
|
||||
In littlefs's case, it's possible to use the revision count on metadata pairs
|
||||
to approximate the wear of a metadata block. And combined with the COW nature
|
||||
of files, littlefs could provide your usually implementation of dynamic wear
|
||||
leveling.
|
||||
|
||||
However, the littlefs does not. This is for a few reasons. Most notably, even
|
||||
if the littlefs did implement dynamic wear leveling, this would still not
|
||||
@@ -933,19 +1183,20 @@ As a flash device reaches the end of its life, the metadata blocks will
|
||||
naturally be the first to go since they are updated most often. In this
|
||||
situation, the littlefs is designed to simply move on to another set of
|
||||
metadata blocks. This travelling means that at the end of a flash device's
|
||||
life, the filesystem will have worn the device down as evenly as a dynamic
|
||||
wear leveling filesystem could anyways. Simply put, if the lifetime of flash
|
||||
is a serious concern, static wear leveling is the only valid solution.
|
||||
life, the filesystem will have worn the device down nearly as evenly as the
|
||||
usual dynamic wear leveling could. More aggressive wear leveling would come
|
||||
with a code-size cost for marginal benefit.
|
||||
|
||||
This is a very important takeaway to note. If your storage stack uses highly
|
||||
sensitive storage such as NAND flash. In most cases you are going to be better
|
||||
off just using a [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
|
||||
|
||||
One important takeaway to note, if your storage stack uses highly sensitive
|
||||
storage such as NAND flash, static wear leveling is the only valid solution.
|
||||
In most cases you are going to be better off using a full [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
|
||||
NAND flash already has many limitations that make it poorly suited for an
|
||||
embedded system: low erase cycles, very large blocks, errors that can develop
|
||||
even during reads, errors that can develop during writes of neighboring blocks.
|
||||
Managing sensitive storage such as NAND flash is out of scope for the littlefs.
|
||||
The littlefs does have some properties that may be beneficial on top of a FTL,
|
||||
such as limiting the number of writes where possible. But if you have the
|
||||
such as limiting the number of writes where possible, but if you have the
|
||||
storage requirements that necessitate the need of NAND flash, you should have
|
||||
the RAM to match and just use an FTL or flash filesystem.
|
||||
|
||||
@@ -955,18 +1206,18 @@ So, to summarize:
|
||||
|
||||
1. The littlefs is composed of directory blocks
|
||||
2. Each directory is a linked-list of metadata pairs
|
||||
3. These metadata pairs can be updated atomically by alternative which
|
||||
3. These metadata pairs can be updated atomically by alternating which
|
||||
metadata block is active
|
||||
4. Directory blocks contain either references to other directories or files
|
||||
5. Files are represented by copy-on-write CTZ linked-lists
|
||||
6. The CTZ linked-lists support appending in O(1) and reading in O(n logn)
|
||||
7. Blocks are allocated by scanning the filesystem for used blocks in a
|
||||
5. Files are represented by copy-on-write CTZ skip-lists which support O(1)
|
||||
append and O(nlogn) reading
|
||||
6. Blocks are allocated by scanning the filesystem for used blocks in a
|
||||
fixed-size lookahead region is that stored in a bit-vector
|
||||
8. To facilitate scanning the filesystem, all directories are part of a
|
||||
7. To facilitate scanning the filesystem, all directories are part of a
|
||||
linked-list that is threaded through the entire filesystem
|
||||
9. If a block develops an error, the littlefs allocates a new block, and
|
||||
8. If a block develops an error, the littlefs allocates a new block, and
|
||||
moves the data and references of the old block to the new.
|
||||
10. Any case where an atomic operation is not possible, it is taken care of
|
||||
9. Any case where an atomic operation is not possible, mistakes are resolved
|
||||
by a deorphan step that occurs on the first allocation after boot
|
||||
|
||||
That's the little filesystem. Thanks for reading!
|
||||
|
||||
10
Makefile
10
Makefile
@@ -11,6 +11,8 @@ ASM := $(SRC:.c=.s)
|
||||
|
||||
TEST := $(patsubst tests/%.sh,%,$(wildcard tests/test_*))
|
||||
|
||||
SHELL = /bin/bash -o pipefail
|
||||
|
||||
ifdef DEBUG
|
||||
CFLAGS += -O0 -g3
|
||||
else
|
||||
@@ -31,10 +33,14 @@ size: $(OBJ)
|
||||
$(SIZE) -t $^
|
||||
|
||||
.SUFFIXES:
|
||||
test: test_format test_dirs test_files test_seek test_parallel \
|
||||
test_alloc test_paths test_orphan test_corrupt
|
||||
test: test_format test_dirs test_files test_seek test_truncate test_parallel \
|
||||
test_alloc test_paths test_orphan test_move test_corrupt
|
||||
test_%: tests/test_%.sh
|
||||
ifdef QUIET
|
||||
./$< | sed -n '/^[-=]/p'
|
||||
else
|
||||
./$<
|
||||
endif
|
||||
|
||||
-include $(DEP)
|
||||
|
||||
|
||||
75
README.md
75
README.md
@@ -11,23 +11,17 @@ A little fail-safe filesystem designed for embedded systems.
|
||||
| | |
|
||||
```
|
||||
|
||||
**Fail-safe** - The littlefs is designed to work consistently with random
|
||||
power failures. During filesystem operations the storage on disk is always
|
||||
kept in a valid state. The filesystem also has strong copy-on-write garuntees.
|
||||
When updating a file, the original file will remain unmodified until the
|
||||
file is closed, or sync is called.
|
||||
**Bounded RAM/ROM** - The littlefs is designed to work with a limited amount
|
||||
of memory. Recursion is avoided and dynamic memory is limited to configurable
|
||||
buffers that can be provided statically.
|
||||
|
||||
**Wear awareness** - While the littlefs does not implement static wear
|
||||
leveling, the littlefs takes into account write errors reported by the
|
||||
underlying block device and uses a limited form of dynamic wear leveling
|
||||
to manage blocks that go bad during the lifetime of the filesystem.
|
||||
**Power-loss resilient** - The littlefs is designed for systems that may have
|
||||
random power failures. The littlefs has strong copy-on-write guaruntees and
|
||||
storage on disk is always kept in a valid state.
|
||||
|
||||
**Bounded ram/rom** - The littlefs is designed to work in a
|
||||
limited amount of memory, recursion is avoided, and dynamic memory is kept
|
||||
to a minimum. The littlefs allocates two fixed-size buffers for general
|
||||
operations, and one fixed-size buffer per file. If there is only ever one file
|
||||
in use, all memory can be provided statically and the littlefs can be used
|
||||
in a system without dynamic memory.
|
||||
**Wear leveling** - Since the most common form of embedded storage is erodible
|
||||
flash memories, littlefs provides a form of dynamic wear leveling for systems
|
||||
that can not fit a full flash translation layer.
|
||||
|
||||
## Example
|
||||
|
||||
@@ -96,7 +90,7 @@ int main(void) {
|
||||
Detailed documentation (or at least as much detail as is currently available)
|
||||
can be cound in the comments in [lfs.h](lfs.h).
|
||||
|
||||
As you may have noticed, the littlefs takes in a configuration structure that
|
||||
As you may have noticed, littlefs takes in a configuration structure that
|
||||
defines how the filesystem operates. The configuration struct provides the
|
||||
filesystem with the block device operations and dimensions, tweakable
|
||||
parameters that tradeoff memory usage for performance, and optional
|
||||
@@ -104,14 +98,16 @@ static buffers if the user wants to avoid dynamic memory.
|
||||
|
||||
The state of the littlefs is stored in the `lfs_t` type which is left up
|
||||
to the user to allocate, allowing multiple filesystems to be in use
|
||||
simultaneously. With the `lfs_t` and configuration struct, a user can either
|
||||
simultaneously. With the `lfs_t` and configuration struct, a user can
|
||||
format a block device or mount the filesystem.
|
||||
|
||||
Once mounted, the littlefs provides a full set of posix-like file and
|
||||
directory functions, with the deviation that the allocation of filesystem
|
||||
structures must be provided by the user. An important addition is that
|
||||
no file updates will actually be written to disk until a sync or close
|
||||
is called.
|
||||
structures must be provided by the user.
|
||||
|
||||
All posix operations, such as remove and rename, are atomic, even in event
|
||||
of power-loss. Additionally, no file updates are actually commited to the
|
||||
filesystem until sync or close is called on the file.
|
||||
|
||||
## Other notes
|
||||
|
||||
@@ -119,19 +115,19 @@ All littlefs have the potential to return a negative error code. The errors
|
||||
can be either one of those found in the `enum lfs_error` in [lfs.h](lfs.h),
|
||||
or an error returned by the user's block device operations.
|
||||
|
||||
It should also be noted that the littlefs does not do anything to insure
|
||||
that the data written to disk is machine portable. It should be fine as
|
||||
long as the machines involved share endianness and don't have really
|
||||
strange padding requirements. If the question does come up, the littlefs
|
||||
metadata should be stored on disk in little-endian format.
|
||||
It should also be noted that the current implementation of littlefs doesn't
|
||||
really do anything to insure that the data written to disk is machine portable.
|
||||
This is fine as long as all of the involved machines share endianness
|
||||
(little-endian) and don't have strange padding requirements.
|
||||
|
||||
## Design
|
||||
## Reference material
|
||||
|
||||
the littlefs was developed with the goal of learning more about filesystem
|
||||
design by tackling the relative unsolved problem of managing a robust
|
||||
filesystem resilient to power loss on devices with limited RAM and ROM.
|
||||
More detail on the solutions and tradeoffs incorporated into this filesystem
|
||||
can be found in [DESIGN.md](DESIGN.md).
|
||||
[DESIGN.md](DESIGN.md) - DESIGN.md contains a fully detailed dive into how
|
||||
littlefs actually works. I would encourage you to read it since the
|
||||
solutions and tradeoffs at work here are quite interesting.
|
||||
|
||||
[SPEC.md](SPEC.md) - SPEC.md contains the on-disk specification of littlefs
|
||||
with all the nitty-gritty details. Can be useful for developing tooling.
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -142,3 +138,20 @@ The tests assume a linux environment and can be started with make:
|
||||
``` bash
|
||||
make test
|
||||
```
|
||||
|
||||
## Related projects
|
||||
|
||||
[Mbed OS](https://github.com/ARMmbed/mbed-os/tree/master/features/filesystem/littlefs) -
|
||||
The easiest way to get started with littlefs is to jump into [Mbed](https://os.mbed.com/),
|
||||
which already has block device drivers for most forms of embedded storage. The
|
||||
littlefs is available in Mbed OS as the [LittleFileSystem](https://os.mbed.com/docs/latest/reference/littlefilesystem.html)
|
||||
class.
|
||||
|
||||
[littlefs-fuse](https://github.com/geky/littlefs-fuse) - A [FUSE](https://github.com/libfuse/libfuse)
|
||||
wrapper for littlefs. The project allows you to mount littlefs directly in a
|
||||
Linux machine. Can be useful for debugging littlefs if you have an SD card
|
||||
handy.
|
||||
|
||||
[littlefs-js](https://github.com/geky/littlefs-js) - A javascript wrapper for
|
||||
littlefs. I'm not sure why you would want this, but it is handy for demos.
|
||||
You can see it in action [here](http://littlefs.geky.net/demo.html).
|
||||
|
||||
370
SPEC.md
Normal file
370
SPEC.md
Normal file
@@ -0,0 +1,370 @@
|
||||
## The little filesystem technical specification
|
||||
|
||||
This is the technical specification of the little filesystem. This document
|
||||
covers the technical details of how the littlefs is stored on disk for
|
||||
introspection and tooling development. This document assumes you are
|
||||
familiar with the design of the littlefs, for more info on how littlefs
|
||||
works check out [DESIGN.md](DESIGN.md).
|
||||
|
||||
```
|
||||
| | | .---._____
|
||||
.-----. | |
|
||||
--|o |---| littlefs |
|
||||
--| |---| |
|
||||
'-----' '----------'
|
||||
| | |
|
||||
```
|
||||
|
||||
## Some important details
|
||||
|
||||
- The littlefs is a block-based filesystem. This is, the disk is divided into
|
||||
an array of evenly sized blocks that are used as the logical unit of storage
|
||||
in littlefs. Block pointers are stored in 32 bits.
|
||||
|
||||
- There is no explicit free-list stored on disk, the littlefs only knows what
|
||||
is in use in the filesystem.
|
||||
|
||||
- The littlefs uses the value of 0xffffffff to represent a null block-pointer.
|
||||
|
||||
- All values in littlefs are stored in little-endian byte order.
|
||||
|
||||
## Directories / Metadata pairs
|
||||
|
||||
Metadata pairs form the backbone of the littlefs and provide a system for
|
||||
atomic updates. Even the superblock is stored in a metadata pair.
|
||||
|
||||
As their name suggests, a metadata pair is stored in two blocks, with one block
|
||||
acting as a redundant backup in case the other is corrupted. These two blocks
|
||||
could be anywhere in the disk and may not be next to each other, so any
|
||||
pointers to directory pairs need to be stored as two block pointers.
|
||||
|
||||
Here's the layout of metadata blocks on disk:
|
||||
|
||||
| offset | size | description |
|
||||
|--------|---------------|----------------|
|
||||
| 0x00 | 32 bits | revision count |
|
||||
| 0x04 | 32 bits | dir size |
|
||||
| 0x08 | 64 bits | tail pointer |
|
||||
| 0x10 | size-16 bytes | dir entries |
|
||||
| 0x00+s | 32 bits | crc |
|
||||
|
||||
**Revision count** - Incremented every update, only the uncorrupted
|
||||
metadata-block with the most recent revision count contains the valid metadata.
|
||||
Comparison between revision counts must use sequence comparison since the
|
||||
revision counts may overflow.
|
||||
|
||||
**Dir size** - Size in bytes of the contents in the current metadata block,
|
||||
including the metadata-pair metadata. Additionally, the highest bit of the
|
||||
dir size may be set to indicate that the directory's contents continue on the
|
||||
next metadata-pair pointed to by the tail pointer.
|
||||
|
||||
**Tail pointer** - Pointer to the next metadata-pair in the filesystem.
|
||||
A null pair-pointer (0xffffffff, 0xffffffff) indicates the end of the list.
|
||||
If the highest bit in the dir size is set, this points to the next
|
||||
metadata-pair in the current directory, otherwise it points to an arbitrary
|
||||
metadata-pair. Starting with the superblock, the tail-pointers form a
|
||||
linked-list containing all metadata-pairs in the filesystem.
|
||||
|
||||
**CRC** - 32 bit CRC used to detect corruption from power-lost, from block
|
||||
end-of-life, or just from noise on the storage bus. The CRC is appended to
|
||||
the end of each metadata-block. The littlefs uses the standard CRC-32, which
|
||||
uses a polynomial of 0x04c11db7, initialized with 0xffffffff.
|
||||
|
||||
Here's an example of a simple directory stored on disk:
|
||||
```
|
||||
(32 bits) revision count = 10 (0x0000000a)
|
||||
(32 bits) dir size = 154 bytes, end of dir (0x0000009a)
|
||||
(64 bits) tail pointer = 37, 36 (0x00000025, 0x00000024)
|
||||
(32 bits) crc = 0xc86e3106
|
||||
|
||||
00000000: 0a 00 00 00 9a 00 00 00 25 00 00 00 24 00 00 00 ........%...$...
|
||||
00000010: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 22 "...........tea"
|
||||
00000020: 08 00 06 07 00 00 00 06 00 00 00 63 6f 66 66 65 ...........coffe
|
||||
00000030: 65 22 08 00 04 09 00 00 00 08 00 00 00 73 6f 64 e"...........sod
|
||||
00000040: 61 22 08 00 05 1d 00 00 00 1c 00 00 00 6d 69 6c a"...........mil
|
||||
00000050: 6b 31 22 08 00 05 1f 00 00 00 1e 00 00 00 6d 69 k1"...........mi
|
||||
00000060: 6c 6b 32 22 08 00 05 21 00 00 00 20 00 00 00 6d lk2"...!... ...m
|
||||
00000070: 69 6c 6b 33 22 08 00 05 23 00 00 00 22 00 00 00 ilk3"...#..."...
|
||||
00000080: 6d 69 6c 6b 34 22 08 00 05 25 00 00 00 24 00 00 milk4"...%...$..
|
||||
00000090: 00 6d 69 6c 6b 35 06 31 6e c8 .milk5.1n.
|
||||
```
|
||||
|
||||
A note about the tail pointer linked-list: Normally, this linked-list is
|
||||
threaded through the entire filesystem. However, after power-loss this
|
||||
linked-list may become out of sync with the rest of the filesystem.
|
||||
- The linked-list may contain a directory that has actually been removed
|
||||
- The linked-list may contain a metadata pair that has not been updated after
|
||||
a block in the pair has gone bad.
|
||||
|
||||
The threaded linked-list must be checked for these errors before it can be
|
||||
used reliably. Fortunately, the threaded linked-list can simply be ignored
|
||||
if littlefs is mounted read-only.
|
||||
|
||||
## Entries
|
||||
|
||||
Each metadata block contains a series of entries that follow a standard
|
||||
layout. An entry contains the type of the entry, along with a section for
|
||||
entry-specific data, attributes, and a name.
|
||||
|
||||
Here's the layout of entries on disk:
|
||||
|
||||
| offset | size | description |
|
||||
|---------|------------------------|----------------------------|
|
||||
| 0x0 | 8 bits | entry type |
|
||||
| 0x1 | 8 bits | entry length |
|
||||
| 0x2 | 8 bits | attribute length |
|
||||
| 0x3 | 8 bits | name length |
|
||||
| 0x4 | entry length bytes | entry-specific data |
|
||||
| 0x4+e | attribute length bytes | system-specific attributes |
|
||||
| 0x4+e+a | name length bytes | entry name |
|
||||
|
||||
**Entry type** - Type of the entry, currently this is limited to the following:
|
||||
- 0x11 - file entry
|
||||
- 0x22 - directory entry
|
||||
- 0x2e - superblock entry
|
||||
|
||||
Additionally, the type is broken into two 4 bit nibbles, with the upper nibble
|
||||
specifying the type's data structure used when scanning the filesystem. The
|
||||
lower nibble clarifies the type further when multiple entries share the same
|
||||
data structure.
|
||||
|
||||
The highest bit is reserved for marking the entry as "moved". If an entry
|
||||
is marked as "moved", the entry may also exist somewhere else in the
|
||||
filesystem. If the entry exists elsewhere, this entry must be treated as
|
||||
though it does not exist.
|
||||
|
||||
**Entry length** - Length in bytes of the entry-specific data. This does
|
||||
not include the entry type size, attributes, or name. The full size in bytes
|
||||
of the entry is 4 + entry length + attribute length + name length.
|
||||
|
||||
**Attribute length** - Length of system-specific attributes in bytes. Since
|
||||
attributes are system specific, there is not much garuntee on the values in
|
||||
this section, and systems are expected to work even when it is empty. See the
|
||||
[attributes](#entry-attributes) section for more details.
|
||||
|
||||
**Name length** - Length of the entry name. Entry names are stored as utf8,
|
||||
although most systems will probably only support ascii. Entry names can not
|
||||
contain '/' and can not be '.' or '..' as these are a part of the syntax of
|
||||
filesystem paths.
|
||||
|
||||
Here's an example of a simple entry stored on disk:
|
||||
```
|
||||
(8 bits) entry type = file (0x11)
|
||||
(8 bits) entry length = 8 bytes (0x08)
|
||||
(8 bits) attribute length = 0 bytes (0x00)
|
||||
(8 bits) name length = 12 bytes (0x0c)
|
||||
(8 bytes) entry data = 05 00 00 00 20 00 00 00
|
||||
(12 bytes) entry name = smallavacado
|
||||
|
||||
00000000: 11 08 00 0c 05 00 00 00 20 00 00 00 73 6d 61 6c ........ ...smal
|
||||
00000010: 6c 61 76 61 63 61 64 6f lavacado
|
||||
```
|
||||
|
||||
## Superblock
|
||||
|
||||
The superblock is the anchor for the littlefs. The superblock is stored as
|
||||
a metadata pair containing a single superblock entry. It is through the
|
||||
superblock that littlefs can access the rest of the filesystem.
|
||||
|
||||
The superblock can always be found in blocks 0 and 1, however fetching the
|
||||
superblock requires knowing the block size. The block size can be guessed by
|
||||
searching the beginning of disk for the string "littlefs", although currently
|
||||
the filesystems relies on the user providing the correct block size.
|
||||
|
||||
The superblock is the most valuable block in the filesystem. It is updated
|
||||
very rarely, only during format or when the root directory must be moved. It
|
||||
is encouraged to always write out both superblock pairs even though it is not
|
||||
required.
|
||||
|
||||
Here's the layout of the superblock entry:
|
||||
|
||||
| offset | size | description |
|
||||
|--------|------------------------|----------------------------------------|
|
||||
| 0x00 | 8 bits | entry type (0x2e for superblock entry) |
|
||||
| 0x01 | 8 bits | entry length (20 bytes) |
|
||||
| 0x02 | 8 bits | attribute length |
|
||||
| 0x03 | 8 bits | name length (8 bytes) |
|
||||
| 0x04 | 64 bits | root directory |
|
||||
| 0x0c | 32 bits | block size |
|
||||
| 0x10 | 32 bits | block count |
|
||||
| 0x14 | 32 bits | version |
|
||||
| 0x18 | attribute length bytes | system-specific attributes |
|
||||
| 0x18+a | 8 bytes | magic string ("littlefs") |
|
||||
|
||||
**Root directory** - Pointer to the root directory's metadata pair.
|
||||
|
||||
**Block size** - Size of the logical block size used by the filesystem.
|
||||
|
||||
**Block count** - Number of blocks in the filesystem.
|
||||
|
||||
**Version** - The littlefs version encoded as a 32 bit value. The upper 16 bits
|
||||
encodes the major version, which is incremented when a breaking-change is
|
||||
introduced in the filesystem specification. The lower 16 bits encodes the
|
||||
minor version, which is incremented when a backwards-compatible change is
|
||||
introduced. Non-standard Attribute changes do not change the version. This
|
||||
specification describes version 1.1 (0x00010001), which is the first version
|
||||
of littlefs.
|
||||
|
||||
**Magic string** - The magic string "littlefs" takes the place of an entry
|
||||
name.
|
||||
|
||||
Here's an example of a complete superblock:
|
||||
```
|
||||
(32 bits) revision count = 3 (0x00000003)
|
||||
(32 bits) dir size = 52 bytes, end of dir (0x00000034)
|
||||
(64 bits) tail pointer = 3, 2 (0x00000003, 0x00000002)
|
||||
(8 bits) entry type = superblock (0x2e)
|
||||
(8 bits) entry length = 20 bytes (0x14)
|
||||
(8 bits) attribute length = 0 bytes (0x00)
|
||||
(8 bits) name length = 8 bytes (0x08)
|
||||
(64 bits) root directory = 3, 2 (0x00000003, 0x00000002)
|
||||
(32 bits) block size = 512 bytes (0x00000200)
|
||||
(32 bits) block count = 1024 blocks (0x00000400)
|
||||
(32 bits) version = 1.1 (0x00010001)
|
||||
(8 bytes) magic string = littlefs
|
||||
(32 bits) crc = 0xc50b74fa
|
||||
|
||||
00000000: 03 00 00 00 34 00 00 00 03 00 00 00 02 00 00 00 ....4...........
|
||||
00000010: 2e 14 00 08 03 00 00 00 02 00 00 00 00 02 00 00 ................
|
||||
00000020: 00 04 00 00 01 00 01 00 6c 69 74 74 6c 65 66 73 ........littlefs
|
||||
00000030: fa 74 0b c5 .t..
|
||||
```
|
||||
|
||||
## Directory entries
|
||||
|
||||
Directories are stored in entries with a pointer to the first metadata pair
|
||||
in the directory. Keep in mind that a directory may be composed of multiple
|
||||
metadata pairs connected by the tail pointer when the highest bit in the dir
|
||||
size is set.
|
||||
|
||||
Here's the layout of a directory entry:
|
||||
|
||||
| offset | size | description |
|
||||
|--------|------------------------|-----------------------------------------|
|
||||
| 0x0 | 8 bits | entry type (0x22 for directory entries) |
|
||||
| 0x1 | 8 bits | entry length (8 bytes) |
|
||||
| 0x2 | 8 bits | attribute length |
|
||||
| 0x3 | 8 bits | name length |
|
||||
| 0x4 | 64 bits | directory pointer |
|
||||
| 0xc | attribute length bytes | system-specific attributes |
|
||||
| 0xc+a | name length bytes | directory name |
|
||||
|
||||
**Directory pointer** - Pointer to the first metadata pair in the directory.
|
||||
|
||||
Here's an example of a directory entry:
|
||||
```
|
||||
(8 bits) entry type = directory (0x22)
|
||||
(8 bits) entry length = 8 bytes (0x08)
|
||||
(8 bits) attribute length = 0 bytes (0x00)
|
||||
(8 bits) name length = 3 bytes (0x03)
|
||||
(64 bits) directory pointer = 5, 4 (0x00000005, 0x00000004)
|
||||
(3 bytes) name = tea
|
||||
|
||||
00000000: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 "...........tea
|
||||
```
|
||||
|
||||
## File entries
|
||||
|
||||
Files are stored in entries with a pointer to the head of the file and the
|
||||
size of the file. This is enough information to determine the state of the
|
||||
CTZ skip-list that is being referenced.
|
||||
|
||||
How files are actually stored on disk is a bit complicated. The full
|
||||
explanation of CTZ skip-lists can be found in [DESIGN.md](DESIGN.md#ctz-skip-lists).
|
||||
|
||||
A terribly quick summary: For every nth block where n is divisible by 2^x,
|
||||
the block contains a pointer to block n-2^x. These pointers are stored in
|
||||
increasing order of x in each block of the file preceding the data in the
|
||||
block.
|
||||
|
||||
The maximum number of pointers in a block is bounded by the maximum file size
|
||||
divided by the block size. With 32 bits for file size, this results in a
|
||||
minimum block size of 104 bytes.
|
||||
|
||||
Here's the layout of a file entry:
|
||||
|
||||
| offset | size | description |
|
||||
|--------|------------------------|------------------------------------|
|
||||
| 0x0 | 8 bits | entry type (0x11 for file entries) |
|
||||
| 0x1 | 8 bits | entry length (8 bytes) |
|
||||
| 0x2 | 8 bits | attribute length |
|
||||
| 0x3 | 8 bits | name length |
|
||||
| 0x4 | 32 bits | file head |
|
||||
| 0x8 | 32 bits | file size |
|
||||
| 0xc | attribute length bytes | system-specific attributes |
|
||||
| 0xc+a | name length bytes | directory name |
|
||||
|
||||
**File head** - Pointer to the block that is the head of the file's CTZ
|
||||
skip-list.
|
||||
|
||||
**File size** - Size of file in bytes.
|
||||
|
||||
Here's an example of a file entry:
|
||||
```
|
||||
(8 bits) entry type = file (0x11)
|
||||
(8 bits) entry length = 8 bytes (0x08)
|
||||
(8 bits) attribute length = 0 bytes (0x00)
|
||||
(8 bits) name length = 12 bytes (0x03)
|
||||
(32 bits) file head = 543 (0x0000021f)
|
||||
(32 bits) file size = 256 KB (0x00040000)
|
||||
(12 bytes) name = largeavacado
|
||||
|
||||
00000000: 11 08 00 0c 1f 02 00 00 00 00 04 00 6c 61 72 67 ............larg
|
||||
00000010: 65 61 76 61 63 61 64 6f eavacado
|
||||
```
|
||||
|
||||
## Entry attributes
|
||||
|
||||
Each dir entry can have up to 256 bytes of system-specific attributes. Since
|
||||
these attributes are system-specific, they may not be portable between
|
||||
different systems. For this reason, all attributes must be optional. A minimal
|
||||
littlefs driver must be able to get away with supporting no attributes at all.
|
||||
|
||||
For some level of portability, littlefs has a simple scheme for attributes.
|
||||
Each attribute is prefixes with an 8-bit type that indicates what the attribute
|
||||
is. The length of attributes may also be determined from this type. Attributes
|
||||
in an entry should be sorted based on portability, since attribute parsing
|
||||
will end when it hits the first attribute it does not understand.
|
||||
|
||||
Each system should choose a 4-bit value to prefix all attribute types with to
|
||||
avoid conflicts with other systems. Additionally, littlefs drivers that support
|
||||
attributes should provide a "ignore attributes" flag to users in case attribute
|
||||
conflicts do occur.
|
||||
|
||||
Attribute types prefixes with 0x0 and 0xf are currently reserved for future
|
||||
standard attributes. Standard attributes will be added to this document in
|
||||
that case.
|
||||
|
||||
Here's an example of non-standard time attribute:
|
||||
```
|
||||
(8 bits) attribute type = time (0xc1)
|
||||
(72 bits) time in seconds = 1506286115 (0x0059c81a23)
|
||||
|
||||
00000000: c1 23 1a c8 59 00 .#..Y.
|
||||
```
|
||||
|
||||
Here's an example of non-standard permissions attribute:
|
||||
```
|
||||
(8 bits) attribute type = permissions (0xc2)
|
||||
(16 bits) permission bits = rw-rw-r-- (0x01b4)
|
||||
|
||||
00000000: c2 b4 01 ...
|
||||
```
|
||||
|
||||
Here's what a dir entry may look like with these attributes:
|
||||
```
|
||||
(8 bits) entry type = file (0x11)
|
||||
(8 bits) entry length = 8 bytes (0x08)
|
||||
(8 bits) attribute length = 9 bytes (0x09)
|
||||
(8 bits) name length = 12 bytes (0x0c)
|
||||
(8 bytes) entry data = 05 00 00 00 20 00 00 00
|
||||
(8 bits) attribute type = time (0xc1)
|
||||
(72 bits) time in seconds = 1506286115 (0x0059c81a23)
|
||||
(8 bits) attribute type = permissions (0xc2)
|
||||
(16 bits) permission bits = rw-rw-r-- (0x01b4)
|
||||
(12 bytes) entry name = smallavacado
|
||||
|
||||
00000000: 11 08 09 0c 05 00 00 00 20 00 00 00 c1 23 1a c8 ........ ....#..
|
||||
00000010: 59 00 c2 b4 01 73 6d 61 6c 6c 61 76 61 63 61 64 Y....smallavacad
|
||||
00000020: 6f o
|
||||
```
|
||||
@@ -1,8 +1,19 @@
|
||||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
* Copyright (c) 2017 ARM Limited
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "emubd/lfs_emubd.h"
|
||||
|
||||
@@ -127,8 +138,8 @@ int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
|
||||
FILE *f = fopen(emu->path, "r+b");
|
||||
if (!f && errno != ENOENT) {
|
||||
return -errno;
|
||||
if (!f) {
|
||||
return (errno == EACCES) ? 0 : -errno;
|
||||
}
|
||||
|
||||
// Check that file was erased
|
||||
@@ -178,14 +189,14 @@ int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
if (!err && S_ISREG(st.st_mode)) {
|
||||
if (!err && S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode)) {
|
||||
int err = unlink(emu->path);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || S_ISREG(st.st_mode)) {
|
||||
if (errno == ENOENT || (S_ISREG(st.st_mode) && (S_IWUSR & st.st_mode))) {
|
||||
FILE *f = fopen(emu->path, "w");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
|
||||
@@ -1,8 +1,19 @@
|
||||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
* Copyright (c) 2017 ARM Limited
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef LFS_EMUBD_H
|
||||
#define LFS_EMUBD_H
|
||||
|
||||
60
lfs.h
60
lfs.h
@@ -1,8 +1,19 @@
|
||||
/*
|
||||
* The little filesystem
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
* Copyright (c) 2017 ARM Limited
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef LFS_H
|
||||
#define LFS_H
|
||||
@@ -30,23 +41,24 @@ typedef uint32_t lfs_block_t;
|
||||
// Possible error codes, these are negative to allow
|
||||
// valid positive return values
|
||||
enum lfs_error {
|
||||
LFS_ERR_OK = 0, // No error
|
||||
LFS_ERR_IO = -5, // Error during device operation
|
||||
LFS_ERR_CORRUPT = -52, // Corrupted
|
||||
LFS_ERR_NOENT = -2, // No directory entry
|
||||
LFS_ERR_EXISTS = -17, // Entry already exists
|
||||
LFS_ERR_NOTDIR = -20, // Entry is not a dir
|
||||
LFS_ERR_ISDIR = -21, // Entry is a dir
|
||||
LFS_ERR_INVAL = -22, // Invalid parameter
|
||||
LFS_ERR_NOSPC = -28, // No space left on device
|
||||
LFS_ERR_NOMEM = -12, // No more memory available
|
||||
LFS_ERR_OK = 0, // No error
|
||||
LFS_ERR_IO = -5, // Error during device operation
|
||||
LFS_ERR_CORRUPT = -52, // Corrupted
|
||||
LFS_ERR_NOENT = -2, // No directory entry
|
||||
LFS_ERR_EXIST = -17, // Entry already exists
|
||||
LFS_ERR_NOTDIR = -20, // Entry is not a dir
|
||||
LFS_ERR_ISDIR = -21, // Entry is a dir
|
||||
LFS_ERR_NOTEMPTY = -39, // Dir is not empty
|
||||
LFS_ERR_INVAL = -22, // Invalid parameter
|
||||
LFS_ERR_NOSPC = -28, // No space left on device
|
||||
LFS_ERR_NOMEM = -12, // No more memory available
|
||||
};
|
||||
|
||||
// File types
|
||||
enum lfs_type {
|
||||
LFS_TYPE_REG = 0x11,
|
||||
LFS_TYPE_DIR = 0x22,
|
||||
LFS_TYPE_SUPERBLOCK = 0xe2,
|
||||
LFS_TYPE_SUPERBLOCK = 0x2e,
|
||||
};
|
||||
|
||||
// File open flags
|
||||
@@ -64,6 +76,7 @@ enum lfs_open_flags {
|
||||
LFS_F_DIRTY = 0x10000, // File does not match storage
|
||||
LFS_F_WRITING = 0x20000, // File has been written since last flush
|
||||
LFS_F_READING = 0x40000, // File has been read since last flush
|
||||
LFS_F_ERRED = 0x80000, // An error occured during write
|
||||
};
|
||||
|
||||
// File seek flags
|
||||
@@ -87,14 +100,14 @@ struct lfs_config {
|
||||
|
||||
// Program a region in a block. The block must have previously
|
||||
// been erased. Negative error codes are propogated to the user.
|
||||
// The prog function must return LFS_ERR_CORRUPT if the block should
|
||||
// be considered bad.
|
||||
// May return LFS_ERR_CORRUPT if the block should be considered bad.
|
||||
int (*prog)(const struct lfs_config *c, lfs_block_t block,
|
||||
lfs_off_t off, const void *buffer, lfs_size_t size);
|
||||
|
||||
// Erase a block. A block must be erased before being programmed.
|
||||
// The state of an erased block is undefined. Negative error codes
|
||||
// are propogated to the user.
|
||||
// May return LFS_ERR_CORRUPT if the block should be considered bad.
|
||||
int (*erase)(const struct lfs_config *c, lfs_block_t block);
|
||||
|
||||
// Sync the state of the underlying block device. Negative error codes
|
||||
@@ -109,11 +122,13 @@ struct lfs_config {
|
||||
// Minimum size of a block program. This determines the size of program
|
||||
// buffers. This may be larger than the physical program size to improve
|
||||
// performance by caching more of the block device.
|
||||
// Must be a multiple of the read size.
|
||||
lfs_size_t prog_size;
|
||||
|
||||
// Size of an erasable block. This does not impact ram consumption and
|
||||
// may be larger than the physical erase size. However, this should be
|
||||
// kept small as each file currently takes up an entire block .
|
||||
// kept small as each file currently takes up an entire block.
|
||||
// Must be a multiple of the program size.
|
||||
lfs_size_t block_size;
|
||||
|
||||
// Number of erasable blocks on the device.
|
||||
@@ -195,6 +210,7 @@ typedef struct lfs_file {
|
||||
} lfs_file_t;
|
||||
|
||||
typedef struct lfs_dir {
|
||||
struct lfs_dir *next;
|
||||
lfs_block_t pair[2];
|
||||
lfs_off_t off;
|
||||
|
||||
@@ -225,10 +241,10 @@ typedef struct lfs_superblock {
|
||||
} lfs_superblock_t;
|
||||
|
||||
typedef struct lfs_free {
|
||||
lfs_block_t begin;
|
||||
lfs_block_t end;
|
||||
lfs_block_t start;
|
||||
lfs_block_t off;
|
||||
uint32_t *lookahead;
|
||||
uint32_t *buffer;
|
||||
} lfs_free_t;
|
||||
|
||||
// The littlefs type
|
||||
@@ -237,12 +253,13 @@ typedef struct lfs {
|
||||
|
||||
lfs_block_t root[2];
|
||||
lfs_file_t *files;
|
||||
bool deorphaned;
|
||||
lfs_dir_t *dirs;
|
||||
|
||||
lfs_cache_t rcache;
|
||||
lfs_cache_t pcache;
|
||||
|
||||
lfs_free_t free;
|
||||
bool deorphaned;
|
||||
} lfs_t;
|
||||
|
||||
|
||||
@@ -347,6 +364,11 @@ lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
|
||||
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
|
||||
lfs_soff_t off, int whence);
|
||||
|
||||
// Truncates the size of the file to the specified size
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
|
||||
|
||||
// Return the position of the file
|
||||
//
|
||||
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
|
||||
|
||||
15
lfs_util.c
15
lfs_util.c
@@ -1,8 +1,19 @@
|
||||
/*
|
||||
* lfs util functions
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
* Copyright (c) 2017 ARM Limited
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "lfs_util.h"
|
||||
|
||||
|
||||
43
lfs_util.h
43
lfs_util.h
@@ -1,8 +1,19 @@
|
||||
/*
|
||||
* lfs utility functions
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
* Copyright (c) 2017 ARM Limited
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef LFS_UTIL_H
|
||||
#define LFS_UTIL_H
|
||||
@@ -12,7 +23,8 @@
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
// Builtin functions
|
||||
// Builtin functions, these may be replaced by more
|
||||
// efficient implementations in the system
|
||||
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
@@ -29,14 +41,37 @@ static inline uint32_t lfs_npw2(uint32_t a) {
|
||||
return 32 - __builtin_clz(a-1);
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_popc(uint32_t a) {
|
||||
return __builtin_popcount(a);
|
||||
}
|
||||
|
||||
static inline int lfs_scmp(uint32_t a, uint32_t b) {
|
||||
return (int)(unsigned)(a - b);
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_fromle32(uint32_t a) {
|
||||
#if defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
return a;
|
||||
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
return __builtin_bswap32(a);
|
||||
#else
|
||||
return (((uint8_t*)&a)[0] << 0) |
|
||||
(((uint8_t*)&a)[1] << 8) |
|
||||
(((uint8_t*)&a)[2] << 16) |
|
||||
(((uint8_t*)&a)[3] << 24);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_tole32(uint32_t a) {
|
||||
return lfs_fromle32(a);
|
||||
}
|
||||
|
||||
// CRC-32 with polynomial = 0x04c11db7
|
||||
void lfs_crc(uint32_t *crc, const void *buffer, size_t size);
|
||||
|
||||
|
||||
// Logging functions
|
||||
// Logging functions, these may be replaced by system-specific
|
||||
// logging functions
|
||||
#define LFS_DEBUG(fmt, ...) printf("lfs debug: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_WARN(fmt, ...) printf("lfs warn: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_ERROR(fmt, ...) printf("lfs error: " fmt "\n", __VA_ARGS__)
|
||||
|
||||
@@ -27,8 +27,8 @@ void test_assert(const char *file, unsigned line,
|
||||
}}
|
||||
|
||||
if (v != e) {{
|
||||
printf("\033[31m%s:%u: assert %s failed, expected %jd\033[0m\n",
|
||||
file, line, s, e);
|
||||
fprintf(stderr, "\033[31m%s:%u: assert %s failed with %jd, "
|
||||
"expected %jd\033[0m\n", file, line, s, v, e);
|
||||
exit(-2);
|
||||
}}
|
||||
}}
|
||||
|
||||
@@ -121,6 +121,7 @@ tests/test.py << TEST
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
@@ -142,6 +143,7 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_size(&lfs, &file[0]) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -166,6 +168,7 @@ tests/test.py << TEST
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
@@ -187,6 +190,7 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_size(&lfs, &file[0]) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -196,14 +200,14 @@ TEST
|
||||
echo "--- Dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 2*512; i += size) {
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-6)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -214,7 +218,11 @@ tests/test.py << TEST
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_APPEND);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => LFS_ERR_NOSPC;
|
||||
@@ -224,14 +232,14 @@ TEST
|
||||
echo "--- Chained dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 19*512; i += size) {
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-24)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
@@ -247,7 +255,9 @@ tests/test.py << TEST
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 20*512; i += size) {
|
||||
for (lfs_size_t i = 0;
|
||||
i < (cfg.block_count-26)*(cfg.block_size-8);
|
||||
i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
@@ -82,6 +82,17 @@ do
|
||||
lfs_chktree
|
||||
done
|
||||
|
||||
echo "--- Block persistance ---"
|
||||
for i in {0..33}
|
||||
do
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
lfs_mktree
|
||||
chmod a-w blocks/$(printf '%x' $i)
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
done
|
||||
|
||||
echo "--- Big region corruption ---"
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
|
||||
@@ -56,7 +56,7 @@ TEST
|
||||
echo "--- Directory failures ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXISTS;
|
||||
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXIST;
|
||||
lfs_dir_open(&lfs, &dir[0], "tomato") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "burito") => LFS_ERR_NOTDIR;
|
||||
lfs_file_open(&lfs, &file[0], "tomato", LFS_O_RDONLY) => LFS_ERR_NOENT;
|
||||
@@ -124,10 +124,9 @@ tests/test.py << TEST
|
||||
TEST
|
||||
|
||||
echo "--- Directory remove ---"
|
||||
# TESTING HERE
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "potato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "potato") => LFS_ERR_NOTEMPTY;
|
||||
lfs_remove(&lfs, "potato/sweet") => 0;
|
||||
lfs_remove(&lfs, "potato/baked") => 0;
|
||||
lfs_remove(&lfs, "potato/fried") => 0;
|
||||
@@ -256,7 +255,7 @@ tests/test.py << TEST
|
||||
lfs_rename(&lfs, "warmpotato/baked", "coldpotato/baked") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/sweet", "coldpotato/sweet") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/fried", "coldpotato/fried") => 0;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
|
||||
lfs_remove(&lfs, "warmpotato") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
@@ -283,5 +282,78 @@ tests/test.py << TEST
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Recursive remove ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_NOTEMPTY;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "coldpotato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
|
||||
while (true) {
|
||||
int err = lfs_dir_read(&lfs, &dir[0], &info);
|
||||
err >= 0 => 1;
|
||||
if (err == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
strcpy((char*)buffer, "coldpotato/");
|
||||
strcat((char*)buffer, info.name);
|
||||
lfs_remove(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "coldpotato") => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "cactus") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Multi-block remove ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "cactus") => LFS_ERR_NOTEMPTY;
|
||||
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "cactus/test%d", i);
|
||||
lfs_remove(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "cactus") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
|
||||
@@ -34,7 +34,8 @@ tests/test.py << TEST
|
||||
lfs_size_t chunk = 31;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2",
|
||||
${3:-LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC}) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
for (lfs_size_t b = 0; b < chunk; b++) {
|
||||
@@ -53,7 +54,10 @@ tests/test.py << TEST
|
||||
lfs_size_t chunk = 29;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_RDONLY) => 0;
|
||||
lfs_stat(&lfs, "$2", &info) => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => size;
|
||||
lfs_file_open(&lfs, &file[0], "$2", ${3:-LFS_O_RDONLY}) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
lfs_file_read(&lfs, &file[0], buffer, chunk) => chunk;
|
||||
@@ -78,10 +82,27 @@ echo "--- Large file test ---"
|
||||
w_test $LARGESIZE largeavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
|
||||
echo "--- Zero file test ---"
|
||||
w_test 0 noavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Truncate small test ---"
|
||||
w_test $SMALLSIZE mediumavacado
|
||||
r_test $SMALLSIZE mediumavacado
|
||||
w_test $MEDIUMSIZE mediumavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
|
||||
echo "--- Truncate zero test ---"
|
||||
w_test $SMALLSIZE noavacado
|
||||
r_test $SMALLSIZE noavacado
|
||||
w_test 0 noavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Non-overlap check ---"
|
||||
r_test $SMALLSIZE smallavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
r_test 0 noavacado
|
||||
|
||||
echo "--- Dir check ---"
|
||||
tests/test.py << TEST
|
||||
@@ -105,6 +126,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "largeavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => $LARGESIZE;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "noavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
|
||||
236
tests/test_move.sh
Executable file
236
tests/test_move.sh
Executable file
@@ -0,0 +1,236 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Move tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "a") => 0;
|
||||
lfs_mkdir(&lfs, "b") => 0;
|
||||
lfs_mkdir(&lfs, "c") => 0;
|
||||
lfs_mkdir(&lfs, "d") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "a/hi") => 0;
|
||||
lfs_mkdir(&lfs, "a/hi/hola") => 0;
|
||||
lfs_mkdir(&lfs, "a/hi/bonjour") => 0;
|
||||
lfs_mkdir(&lfs, "a/hi/ohayo") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "a/hello", LFS_O_CREAT | LFS_O_WRONLY) => 0;
|
||||
lfs_file_write(&lfs, &file[0], "hola\n", 5) => 5;
|
||||
lfs_file_write(&lfs, &file[0], "bonjour\n", 8) => 8;
|
||||
lfs_file_write(&lfs, &file[0], "ohayo\n", 6) => 6;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move file ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "a/hello", "b/hello") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "a") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hi") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "b") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move file corrupt source ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "b/hello", "c/hello") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
rm -v blocks/7
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "b") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "c") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move file corrupt source and dest ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "c/hello", "d/hello") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
rm -v blocks/8
|
||||
rm -v blocks/a
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "c") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "d") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move dir ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "a/hi", "b/hi") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "a") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "b") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hi") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move dir corrupt source ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "b/hi", "c/hi") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
rm -v blocks/7
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "b") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "c") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hi") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move dir corrupt source and dest ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "c/hi", "d/hi") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
rm -v blocks/9
|
||||
rm -v blocks/a
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "c") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hi") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "d") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Move check ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "a/hi") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "b/hi") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "d/hi") => LFS_ERR_NOENT;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "c/hi") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hola") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "bonjour") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "ohayo") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "a/hello") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "b/hello") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "d/hello") => LFS_ERR_NOENT;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "c/hello", LFS_O_RDONLY) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, 5) => 5;
|
||||
memcmp(buffer, "hola\n", 5) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, 8) => 8;
|
||||
memcmp(buffer, "bonjour\n", 8) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, 6) => 6;
|
||||
memcmp(buffer, "ohayo\n", 6) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
@@ -31,6 +31,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "/milk1") => 0;
|
||||
lfs_stat(&lfs, "/milk1", &info) => 0;
|
||||
strcmp(info.name, "milk1") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
@@ -43,6 +47,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "///tea///hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "///milk2") => 0;
|
||||
lfs_stat(&lfs, "///milk2", &info) => 0;
|
||||
strcmp(info.name, "milk2") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
@@ -57,6 +65,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/./tea/./hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "/./milk3") => 0;
|
||||
lfs_stat(&lfs, "/./milk3", &info) => 0;
|
||||
strcmp(info.name, "milk3") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
@@ -71,6 +83,10 @@ tests/test.py << TEST
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "coffee/../soda/../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "coffee/../milk4") => 0;
|
||||
lfs_stat(&lfs, "coffee/../milk4", &info) => 0;
|
||||
strcmp(info.name, "milk4") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
@@ -79,6 +95,27 @@ tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "coffee/../../../../../../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "coffee/../../../../../../milk5") => 0;
|
||||
lfs_stat(&lfs, "coffee/../../../../../../milk5", &info) => 0;
|
||||
strcmp(info.name, "milk5") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Root tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "/", &info) => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
strcmp(info.name, "/") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Sketchy path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "dirt/ground") => LFS_ERR_NOENT;
|
||||
lfs_mkdir(&lfs, "dirt/ground/earth") => LFS_ERR_NOENT;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
|
||||
@@ -133,15 +133,23 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
@@ -174,15 +182,23 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], size, LFS_SEEK_CUR) => 3*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
@@ -211,7 +227,7 @@ tests/test.py << TEST
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
@@ -219,11 +235,11 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
@@ -254,7 +270,7 @@ tests/test.py << TEST
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
@@ -262,11 +278,11 @@ tests/test.py << TEST
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) >= 0 => 1;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
@@ -277,5 +293,69 @@ tests/test.py << TEST
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Boundary seek and write ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
|
||||
|
||||
size = strlen("hedgehoghog");
|
||||
const lfs_soff_t offsets[] = {512, 1020, 513, 1021, 511, 1019};
|
||||
|
||||
for (int i = 0; i < sizeof(offsets) / sizeof(offsets[0]); i++) {
|
||||
lfs_soff_t off = offsets[i];
|
||||
memcpy(buffer, "hedgehoghog", size);
|
||||
lfs_file_seek(&lfs, &file[0], off, LFS_SEEK_SET) => off;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_seek(&lfs, &file[0], off, LFS_SEEK_SET) => off;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "hedgehoghog", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_SET) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_sync(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Out-of-bounds seek ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
|
||||
|
||||
size = strlen("kittycatcat");
|
||||
lfs_file_size(&lfs, &file[0]) => $LARGESIZE*size;
|
||||
lfs_file_seek(&lfs, &file[0], ($LARGESIZE+$SMALLSIZE)*size,
|
||||
LFS_SEEK_SET) => ($LARGESIZE+$SMALLSIZE)*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => 0;
|
||||
|
||||
memcpy(buffer, "porcupineee", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], ($LARGESIZE+$SMALLSIZE)*size,
|
||||
LFS_SEEK_SET) => ($LARGESIZE+$SMALLSIZE)*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "porcupineee", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], $LARGESIZE*size,
|
||||
LFS_SEEK_SET) => $LARGESIZE*size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "\0\0\0\0\0\0\0\0\0\0\0", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -(($LARGESIZE+$SMALLSIZE)*size),
|
||||
LFS_SEEK_CUR) => LFS_ERR_INVAL;
|
||||
lfs_file_tell(&lfs, &file[0]) => ($LARGESIZE+1)*size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -(($LARGESIZE+2*$SMALLSIZE)*size),
|
||||
LFS_SEEK_END) => LFS_ERR_INVAL;
|
||||
lfs_file_tell(&lfs, &file[0]) => ($LARGESIZE+1)*size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
|
||||
133
tests/test_truncate.sh
Executable file
133
tests/test_truncate.sh
Executable file
@@ -0,0 +1,133 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
SMALLSIZE=32
|
||||
MEDIUMSIZE=2048
|
||||
LARGESIZE=8192
|
||||
|
||||
echo "=== Truncate tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
truncate_test() {
|
||||
STARTSIZES="$1"
|
||||
HOTSIZES="$2"
|
||||
COLDSIZES="$3"
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_TRUNC) => 0;
|
||||
|
||||
strcpy((char*)buffer, "hair");
|
||||
size = strlen((char*)buffer);
|
||||
for (int j = 0; j < startsizes[i]; j += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_size(&lfs, &file[0]) => startsizes[i];
|
||||
|
||||
lfs_file_truncate(&lfs, &file[0], hotsizes[i]) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
static const lfs_off_t coldsizes[] = {$COLDSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDWR) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => hotsizes[i];
|
||||
|
||||
size = strlen("hair");
|
||||
int j = 0;
|
||||
for (; j < startsizes[i] && j < hotsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "hair", size) => 0;
|
||||
}
|
||||
|
||||
for (; j < hotsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "\0\0\0\0", size) => 0;
|
||||
}
|
||||
|
||||
lfs_file_truncate(&lfs, &file[0], coldsizes[i]) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
static const lfs_off_t startsizes[] = {$STARTSIZES};
|
||||
static const lfs_off_t hotsizes[] = {$HOTSIZES};
|
||||
static const lfs_off_t coldsizes[] = {$COLDSIZES};
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
|
||||
for (int i = 0; i < sizeof(startsizes)/sizeof(startsizes[0]); i++) {
|
||||
sprintf((char*)buffer, "hairyhead%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (const char*)buffer, LFS_O_RDONLY) => 0;
|
||||
lfs_file_size(&lfs, &file[0]) => coldsizes[i];
|
||||
|
||||
size = strlen("hair");
|
||||
int j = 0;
|
||||
for (; j < startsizes[i] && j < hotsizes[i] && j < coldsizes[i];
|
||||
j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "hair", size) => 0;
|
||||
}
|
||||
|
||||
for (; j < coldsizes[i]; j += size) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "\0\0\0\0", size) => 0;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
echo "--- Cold shrinking truncate ---"
|
||||
truncate_test \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Cold expanding truncate ---"
|
||||
truncate_test \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Warm shrinking truncate ---"
|
||||
truncate_test \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
" 0, 0, 0, 0, 0"
|
||||
|
||||
echo "--- Warm expanding truncate ---"
|
||||
truncate_test \
|
||||
" 0, $SMALLSIZE, $MEDIUMSIZE, $LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE" \
|
||||
"2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE, 2*$LARGESIZE"
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
||||
Reference in New Issue
Block a user