Files
thirdparty-littlefs/lfs.c
2018-10-13 13:41:05 -05:00

4706 lines
132 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs.h"
#include "lfs_util.h"
/// Caching block device operations ///
static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
while (size > 0) {
if (pcache && block == pcache->block && off >= pcache->off &&
off < pcache->off + lfs->cfg->prog_size) {
// is already in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (block == rcache->block && off >= rcache->off &&
off < rcache->off + lfs->cfg->read_size) {
// is already in rcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->read_size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) {
// bypass cache?
lfs_size_t diff = size - (size % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
LFS_ASSERT(block < lfs->cfg->block_count);
rcache->block = block;
rcache->off = off - (off % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, lfs->cfg->read_size);
if (err) {
return err;
}
}
return 0;
}
static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs_cache_read(lfs, rcache, pcache,
block, off+i, &c, 1);
if (err) {
return err;
}
if (c != data[i]) {
return false;
}
}
return true;
}
static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs_cache_read(lfs, rcache, pcache,
block, off+i, &c, 1);
if (err) {
return err;
}
lfs_crc(crc, &c, 1);
}
return 0;
}
static int lfs_cache_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache) {
if (pcache->block != 0xffffffff) {
LFS_ASSERT(pcache->block < lfs->cfg->block_count);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, lfs->cfg->prog_size);
if (err) {
return err;
}
if (rcache) {
int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block,
pcache->off, pcache->buffer, lfs->cfg->prog_size);
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_CORRUPT;
}
}
pcache->block = 0xffffffff;
}
return 0;
}
static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache,
lfs_cache_t *rcache, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block && off >= pcache->off &&
off < pcache->off + lfs->cfg->prog_size) {
// is already in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
if (off % lfs->cfg->prog_size == 0) {
// eagerly flush out pcache if we fill up
int err = lfs_cache_flush(lfs, pcache, rcache);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == 0xffffffff);
if (off % lfs->cfg->prog_size == 0 &&
size >= lfs->cfg->prog_size) {
// bypass pcache?
LFS_ASSERT(block < lfs->cfg->block_count);
lfs_size_t diff = size - (size % lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
if (rcache) {
int res = lfs_cache_cmp(lfs, rcache, NULL,
block, off, data, diff);
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_CORRUPT;
}
}
data += diff;
off += diff;
size -= diff;
continue;
}
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = off - (off % lfs->cfg->prog_size);
}
return 0;
}
/// General lfs block device operations ///
static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
return lfs_cache_read(lfs, &lfs->rcache, &lfs->pcache,
block, off, buffer, size);
}
static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
return lfs_cache_prog(lfs, &lfs->pcache, NULL,
block, off, buffer, size);
}
static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size);
}
static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc);
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->cfg->block_count);
return lfs->cfg->erase(lfs->cfg, block);
}
static int lfs_bd_sync(lfs_t *lfs) {
lfs->rcache.block = 0xffffffff;
int err = lfs_cache_flush(lfs, &lfs->pcache, NULL);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
/// Internal operations predeclared here ///
int lfs_fs_traverse(lfs_t *lfs,
int (*cb)(lfs_t*, void*, lfs_block_t), void *data);
static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir);
static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_dir_t *parent, lfs_entry_t *entry);
static int lfs_moved(lfs_t *lfs, const lfs_block_t pair[2]);
static int lfs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], const lfs_block_t newpair[2]);
int lfs_deorphan(lfs_t *lfs);
/// Block allocator ///
static int lfs_alloc_lookahead(lfs_t *lfs, void *p, lfs_block_t block) {
lfs_block_t off = ((block - lfs->free.off)
+ lfs->cfg->block_count) % lfs->cfg->block_count;
if (off < lfs->free.size) {
lfs->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
while (lfs->free.i != lfs->free.size) {
lfs_block_t off = lfs->free.i;
lfs->free.i += 1;
lfs->free.ack -= 1;
if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs->free.off + off) % lfs->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs->free.i != lfs->free.size &&
(lfs->free.buffer[lfs->free.i / 32]
& (1U << (lfs->free.i % 32)))) {
lfs->free.i += 1;
lfs->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs->free.ack == 0) {
LFS_WARN("No more free space %d", lfs->free.i + lfs->free.off);
return LFS_ERR_NOSPC;
}
lfs->free.off = (lfs->free.off + lfs->free.size)
% lfs->cfg->block_count;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack);
lfs->free.i = 0;
// find mask of free blocks from tree
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, NULL);
if (err) {
return err;
}
}
}
static void lfs_alloc_ack(lfs_t *lfs) {
lfs->free.ack = lfs->cfg->block_count;
}
/// Endian swapping functions ///
//static void lfs_dir_fromle32(struct lfs_disk_dir *d) {
// d->rev = lfs_fromle32(d->rev);
// d->size = lfs_fromle32(d->size);
// d->tail[0] = lfs_fromle32(d->tail[0]);
// d->tail[1] = lfs_fromle32(d->tail[1]);
//}
//
//static void lfs_dir_tole32(struct lfs_disk_dir *d) {
// d->rev = lfs_tole32(d->rev);
// d->size = lfs_tole32(d->size);
// d->tail[0] = lfs_tole32(d->tail[0]);
// d->tail[1] = lfs_tole32(d->tail[1]);
//}
//
//static void lfs_entry_fromle32(struct lfs_disk_entry *d) {
// d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
// d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
//}
//
//static void lfs_entry_tole32(struct lfs_disk_entry *d) {
// d->u.dir[0] = lfs_tole32(d->u.dir[0]);
// d->u.dir[1] = lfs_tole32(d->u.dir[1]);
//}
///*static*/ void lfs_superblock_fromle32(struct lfs_disk_superblock *d) {
// d->root[0] = lfs_fromle32(d->root[0]);
// d->root[1] = lfs_fromle32(d->root[1]);
// d->block_size = lfs_fromle32(d->block_size);
// d->block_count = lfs_fromle32(d->block_count);
// d->version = lfs_fromle32(d->version);
// d->inline_size = lfs_fromle32(d->inline_size);
// d->attrs_size = lfs_fromle32(d->attrs_size);
// d->name_size = lfs_fromle32(d->name_size);
//}
//
///*static*/ void lfs_superblock_tole32(struct lfs_disk_superblock *d) {
// d->root[0] = lfs_tole32(d->root[0]);
// d->root[1] = lfs_tole32(d->root[1]);
// d->block_size = lfs_tole32(d->block_size);
// d->block_count = lfs_tole32(d->block_count);
// d->version = lfs_tole32(d->version);
// d->inline_size = lfs_tole32(d->inline_size);
// d->attrs_size = lfs_tole32(d->attrs_size);
// d->name_size = lfs_tole32(d->name_size);
//}
/// Other struct functions ///
//static inline lfs_size_t lfs_entry_elen(const lfs_entry_t *entry) {
// return (lfs_size_t)(entry->d.elen) |
// ((lfs_size_t)(entry->d.alen & 0xc0) << 2);
//}
//
//static inline lfs_size_t lfs_entry_alen(const lfs_entry_t *entry) {
// return entry->d.alen & 0x3f;
//}
//
//static inline lfs_size_t lfs_entry_nlen(const lfs_entry_t *entry) {
// return entry->d.nlen;
//}
//
//static inline lfs_size_t lfs_entry_size(const lfs_entry_t *entry) {
// return 4 + lfs_entry_elen(entry) +
// lfs_entry_alen(entry) +
// lfs_entry_nlen(entry);
//}
/// Metadata pair and directory operations ///
static inline void lfs_pairswap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pairisnull(const lfs_block_t pair[2]) {
return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
}
static inline int lfs_paircmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pairsync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
/// Entry tag operations ///
static inline lfs_tag_t lfs_mktag(
uint16_t type, uint16_t id, lfs_size_t size) {
return (type << 22) | (id << 12) | size;
}
static inline bool lfs_tag_valid(lfs_tag_t tag) {
return !(tag & 0x80000000);
}
static inline uint16_t lfs_tag_type(lfs_tag_t tag) {
return (tag & 0x7fc00000) >> 22;
}
static inline uint8_t lfs_tag_supertype(lfs_tag_t tag) {
return (tag & 0x70000000) >> 22;
}
static inline uint8_t lfs_tag_subtype(lfs_tag_t tag) {
return (tag & 0x7c000000) >> 22;
}
static inline uint8_t lfs_tag_struct(lfs_tag_t tag) {
return (tag & 0x03c00000) >> 22;
}
static inline uint16_t lfs_tag_id(lfs_tag_t tag) {
return (tag & 0x001ff000) >> 12;
}
static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) {
return tag & 0x00000fff;
}
struct lfs_commit {
lfs_block_t block;
lfs_off_t off;
lfs_off_t begin;
lfs_off_t end;
lfs_tag_t ptag;
uint32_t crc;
struct {
uint16_t begin;
uint16_t end;
} filter;
};
static int lfs_commit_traverse(lfs_t *lfs, struct lfs_commit *commit,
int (*cb)(lfs_t *lfs, void *data, lfs_entry_t entry), void *data) {
// TODO duplicate this? move it to dir?
// iterate over dir block backwards (for faster lookups)
lfs_block_t block = commit->block;
lfs_off_t off = commit->off;
lfs_tag_t tag = commit->ptag;
while (off != sizeof(uint32_t)) {
// TODO rm me
printf("tag r %#010x (%x:%x %03x %03x %03x)\n", tag, block, off-lfs_tag_size(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag));
int err = cb(lfs, data, (lfs_entry_t){
(0x80000000 | tag),
.u.d.block=block,
.u.d.off=off-lfs_tag_size(tag)});
if (err) {
return err;
}
LFS_ASSERT(off > sizeof(tag)+lfs_tag_size(tag));
off -= sizeof(tag)+lfs_tag_size(tag);
lfs_tag_t ntag;
err = lfs_bd_read(lfs, block, off, &ntag, sizeof(ntag));
if (err) {
return err;
}
tag ^= lfs_fromle32(ntag);
}
return 0;
}
//static int lfs_commit_compactcheck(lfs_t *lfs, void *p, lfs_entry_t entry) {
// struct lfs_commit *commit = p;
// if (lfs_tag_id(entry.tag) != commit->compact.id) {
// return 1;
// } else if (lfs_tag_type(entry.tag) == commit->compact.type) {
// return 2;
// }
//
// return 0;
//}
//
static int lfs_commit_commit(lfs_t *lfs,
struct lfs_commit *commit, lfs_entry_t entry) {
// filter out ids
if (lfs_tag_id(entry.tag) != 0x1ff && (
lfs_tag_id(entry.tag) < commit->filter.begin ||
lfs_tag_id(entry.tag) >= commit->filter.end)) {
return 0;
}
uint16_t id = lfs_tag_id(entry.tag) - commit->filter.begin;
entry.tag = (id << 12) | (entry.tag & 0xffe00fff);
// check if we fit
lfs_size_t size = lfs_tag_size(entry.tag);
if (commit->off + sizeof(lfs_tag_t)+size > commit->end) {
return LFS_ERR_NOSPC;
}
// write out tag
// TODO rm me
printf("tag w %#010x (%x:%x %03x %03x %03x)\n", entry.tag, commit->block, commit->off+sizeof(lfs_tag_t), lfs_tag_type(entry.tag), lfs_tag_id(entry.tag), lfs_tag_size(entry.tag));
lfs_tag_t tag = lfs_tole32((entry.tag & 0x7fffffff) ^ commit->ptag);
lfs_crc(&commit->crc, &tag, sizeof(tag));
int err = lfs_bd_prog(lfs, commit->block, commit->off, &tag, sizeof(tag));
if (err) {
return err;
}
commit->off += sizeof(tag);
if (!(entry.tag & 0x80000000)) {
// from memory
lfs_crc(&commit->crc, entry.u.buffer, size);
err = lfs_bd_prog(lfs, commit->block, commit->off,
entry.u.buffer, size);
if (err) {
return err;
}
} else {
// from disk
for (lfs_off_t i = 0; i < size; i++) {
uint8_t dat;
int err = lfs_bd_read(lfs,
entry.u.d.block, entry.u.d.off+i, &dat, 1);
if (err) {
return err;
}
lfs_crc(&commit->crc, &dat, 1);
err = lfs_bd_prog(lfs, commit->block, commit->off+i, &dat, 1);
if (err) {
return err;
}
}
}
commit->off += size;
commit->ptag = entry.tag;
return 0;
}
static int lfs_commit_crc(lfs_t *lfs, struct lfs_commit *commit) {
// align to program units
lfs_off_t noff = lfs_alignup(
commit->off + 2*sizeof(uint32_t), lfs->cfg->prog_size);
// read erased state from next program unit
lfs_tag_t tag;
int err = lfs_bd_read(lfs, commit->block, noff, &tag, sizeof(tag));
if (err) {
return err;
}
// build crc tag
tag = (0x80000000 & ~lfs_fromle32(tag)) |
lfs_mktag(LFS_TYPE_CRC, 0x1ff,
noff - (commit->off+sizeof(uint32_t)));
// write out crc
printf("tag w %#010x (%x:%x %03x %03x %03x)\n", tag, commit->block, commit->off+sizeof(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag));
uint32_t footer[2];
footer[0] = lfs_tole32(tag ^ commit->ptag);
lfs_crc(&commit->crc, &footer[0], sizeof(footer[0]));
footer[1] = lfs_tole32(commit->crc);
err = lfs_bd_prog(lfs, commit->block, commit->off,
footer, sizeof(footer));
if (err) {
return err;
}
commit->off += sizeof(tag)+lfs_tag_size(tag);
commit->ptag = tag;
// flush buffers
err = lfs_bd_sync(lfs);
if (err) {
return err;
}
// successful commit, check checksum to make sure
uint32_t crc = 0xffffffff;
err = lfs_bd_crc(lfs, commit->block, commit->begin,
commit->off-lfs_tag_size(tag) - commit->begin, &crc);
if (err) {
return err;
}
if (crc != commit->crc) {
return LFS_ERR_CORRUPT;
}
return 0;
}
// committer for regions
static int lfs_commit_regions(lfs_t *lfs, void *p, struct lfs_commit *commit) {
for (lfs_entrylist_t *regions = p; regions; regions = regions->next) {
int err = lfs_commit_commit(lfs, commit, regions->e);
if (err) {
return err;
}
}
return 0;
}
// TODO redeclare
static int lfs_dir_traverse(lfs_t *lfs, lfs_dir_t *dir,
int (*cb)(lfs_t *lfs, void *data, lfs_entry_t entry),
void *data);
// committer for moves
struct lfs_commit_move {
lfs_dir_t *dir;
struct {
uint16_t from;
uint16_t to;
} id;
uint16_t type;
struct lfs_commit *commit;
};
static int lfs_commit_movecheck(lfs_t *lfs, void *p, lfs_entry_t entry) {
struct lfs_commit_move *move = p;
if (lfs_tag_id(entry.tag) != move->id.to - move->commit->filter.begin) {
return 1;
}
if (lfs_tag_type(entry.tag) & 0x100) {
if (lfs_tag_type(entry.tag) == move->type) {
return 2;
}
} else {
// TODO hmm
if (lfs_tag_subtype(entry.tag) == (move->type & 0x1f0)) {
return 2;
}
}
return 0;
}
static int lfs_commit_moveiter(lfs_t *lfs, void *p, lfs_entry_t entry) {
struct lfs_commit_move *move = p;
if (lfs_tag_type(entry.tag) == LFS_TYPE_DELETE) {
if (lfs_tag_id(entry.tag) <= move->id.from) {
// something was deleted, we need to move around it
move->id.from += 1;
}
}
if (lfs_tag_id(entry.tag) != move->id.from) {
// ignore non-matching ids
return 0;
}
move->type = lfs_tag_type(entry.tag);
int res = lfs_commit_traverse(lfs, move->commit,
lfs_commit_movecheck, move);
if (res < 0) {
return res;
}
if (res == 2) {
// already committed
return 0;
}
// update id and commit, as we are currently unique
entry.tag = (move->id.to << 12) | (entry.tag & 0xffe00fff);
return lfs_commit_commit(lfs, move->commit, entry);
}
static int lfs_commit_move(lfs_t *lfs, void *p, struct lfs_commit *commit) {
struct lfs_commit_move *move = p;
move->commit = commit;
int err = lfs_dir_traverse(lfs, move->dir, lfs_commit_moveiter, move);
if (err < 0) {
return err;
}
return 0;
}
static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir,
bool split, const lfs_block_t tail[2]) {
// allocate pair of dir blocks (backwards, so we write to block 1 first)
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]);
if (err) {
return err;
}
}
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->rev, 4);
dir->rev = lfs_fromle32(dir->rev);
if (err) {
return err;
}
// set defaults
dir->off = sizeof(dir->rev);
dir->etag = 0;
dir->count = 0;
dir->tail[0] = tail[0];
dir->tail[1] = tail[1];
dir->erased = false;
dir->split = split;
// don't write out yet, let caller take care of that
return 0;
}
static int lfs_dir_fetchwith(lfs_t *lfs,
lfs_dir_t *dir, const lfs_block_t pair[2],
int (*cb)(lfs_t *lfs, void *data, lfs_entry_t entry), void *data) {
dir->pair[0] = pair[0];
dir->pair[1] = pair[1];
// find the block with the most recent revision
uint32_t rev[2];
for (int i = 0; i < 2; i++) {
int err = lfs_bd_read(lfs, dir->pair[i], 0, &rev[i], sizeof(rev[i]));
rev[i] = lfs_fromle32(rev[i]);
if (err) {
return err;
}
}
if (lfs_scmp(rev[1], rev[0]) > 0) {
lfs_pairswap(dir->pair);
lfs_pairswap(rev);
}
// load blocks and check crc
for (int i = 0; i < 2; i++) {
lfs_off_t off = sizeof(dir->rev);
lfs_tag_t ptag = 0;
uint32_t crc = 0xffffffff;
dir->tail[0] = 0xffffffff;
dir->tail[1] = 0xffffffff;
dir->count = 0;
dir->split = false;
dir->moveid = -1;
dir->rev = lfs_tole32(rev[0]);
lfs_crc(&crc, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
while (true) {
// extract next tag
lfs_tag_t tag;
int err = lfs_bd_read(lfs, dir->pair[0], off, &tag, sizeof(tag));
if (err) {
return err;
}
lfs_crc(&crc, &tag, sizeof(tag));
tag = lfs_fromle32(tag) ^ ptag;
// next commit not yet programmed
if (lfs_tag_type(ptag) == LFS_TYPE_CRC && !lfs_tag_valid(tag)) {
dir->erased = true;
return 0;
}
// check we're in valid range
if (off + sizeof(tag)+lfs_tag_size(tag) > lfs->cfg->block_size) {
break;
}
printf("tag r %#010x (%x:%x %03x %03x %03x)\n", tag, dir->pair[0], off+sizeof(tag), lfs_tag_type(tag), lfs_tag_id(tag), lfs_tag_size(tag));
if (lfs_tag_type(tag) == LFS_TYPE_CRC) {
// check the crc entry
uint32_t dcrc;
int err = lfs_bd_read(lfs, dir->pair[0],
off+sizeof(tag), &dcrc, sizeof(dcrc));
if (err) {
return err;
}
if (crc != lfs_fromle32(dcrc)) {
if (off == sizeof(dir->rev)) {
// try other block
break;
} else {
// consider what we have good enough
dir->erased = false;
return 0;
}
}
dir->off = off + sizeof(tag)+lfs_tag_size(tag);
dir->etag = tag;
crc = 0xffffffff;
} else {
err = lfs_bd_crc(lfs, dir->pair[0],
off+sizeof(tag), lfs_tag_size(tag), &crc);
if (err) {
return err;
}
if (lfs_tag_type(tag) == LFS_TYPE_SOFTTAIL ||
lfs_tag_type(tag) == LFS_TYPE_HARDTAIL) {
dir->split = lfs_tag_type(tag) == LFS_TYPE_HARDTAIL;
err = lfs_bd_read(lfs, dir->pair[0], off+sizeof(tag),
dir->tail, sizeof(dir->tail));
if (err) {
return err;
}
} else if (lfs_tag_type(tag) == LFS_TYPE_MOVE) {
// TODO handle moves correctly?
dir->moveid = lfs_tag_id(tag);
} else {
if (lfs_tag_id(tag) < 0x1ff &&
lfs_tag_id(tag) >= dir->count) {
dir->count = lfs_tag_id(tag)+1;
}
if (lfs_tag_type(tag) == LFS_TYPE_DELETE) {
dir->count -= 1;
if (lfs_tag_id(tag) == dir->moveid) {
dir->moveid = -1;
} else if (lfs_tag_id(tag) < dir->moveid) {
dir->moveid -= 1;
}
}
if (cb) {
err = cb(lfs, data, (lfs_entry_t){
(tag | 0x80000000),
.u.d.block=dir->pair[0],
.u.d.off=off+sizeof(tag)});
if (err) {
return err;
}
}
}
}
ptag = tag;
off += sizeof(tag)+lfs_tag_size(tag);
}
// failed, try the other crc?
lfs_pairswap(dir->pair);
lfs_pairswap(rev);
}
LFS_ERROR("Corrupted dir pair at %d %d", dir->pair[0], dir->pair[1]);
return LFS_ERR_CORRUPT;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_dir_t *dir, const lfs_block_t pair[2]) {
return lfs_dir_fetchwith(lfs, dir, pair, NULL, NULL);
}
static int lfs_dir_traverse(lfs_t *lfs, lfs_dir_t *dir,
int (*cb)(lfs_t *lfs, void *data, lfs_entry_t entry), void *data) {
return lfs_commit_traverse(lfs, &(struct lfs_commit){
.block=dir->pair[0], .off=dir->off, .ptag=dir->etag},
cb, data);
}
//struct lfs_dir_commitmove {
// // traversal things
// lfs_dir_t *dir;
// int (*cb)(lfs_t *lfs, void *data, struct lfs_commit *commit);
// void *data;
//
// // ids to iterate through
// uint16_t begin;
// uint16_t end;
// uint16_t ack;
//};
//
//static int lfs_dir_commitmove_commit(lfs_t *lfs, void *p,
// lfs_entry_t entry) {
// return lfs_commit_commit(lfs, p, entry);
//}
//
//int lfs_dir_commitmove(lfs_t *lfs, void *p, struct lfs_commit *commit) {
// struct lfs_dir_commitmove *move = p;
// for (int i = move->begin; i < move->end; i++) {
// // tell the committer to check for duplicates
// uint16_t old = commit->compact.id;
// if (commit->compact.id < 0) {
// commit->compact.id = i;
// }
//
// // commit pending commits
// int err = move->cb(lfs, move->data, commit);
// if (err) {
// commit->compact.id = old;
// return err;
// }
//
// // iterate over on-disk regions
// err = lfs_dir_traverse(lfs, move->dir,
// lfs_dir_commitmove_commit, commit);
// if (err) {
// commit->compact.id = old;
// return err;
// }
//
// move->ack = i;
// commit->compact.id = old;
// }
//
// return 0;
//}
static int lfs_dir_compact(lfs_t *lfs, lfs_dir_t *dir,
int (*cb)(lfs_t *lfs, void *data, struct lfs_commit *commit),
void *data, lfs_dir_t *source, uint16_t begin, uint16_t end) {
// save some state in case block is bad
const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
bool relocated = false;
// increment revision count
dir->rev += 1;
while (true) {
// last complete id
int16_t ack = -1;
dir->count = end - begin;
if (true) {
// erase block to write to
int err = lfs_bd_erase(lfs, dir->pair[1]);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// write out header
uint32_t crc = 0xffffffff;
uint32_t rev = lfs_tole32(dir->rev);
lfs_crc(&crc, &rev, sizeof(rev));
err = lfs_bd_prog(lfs, dir->pair[1], 0, &rev, sizeof(rev));
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// setup compaction
struct lfs_commit commit = {
.block = dir->pair[1],
.off = sizeof(dir->rev),
// space is complicated, we need room for tail, crc,
// and we keep cap at around half a block
.begin = 0,
.end = lfs_min(
lfs_alignup(lfs->cfg->block_size / 2,
lfs->cfg->prog_size),
lfs->cfg->block_size - 5*sizeof(uint32_t)),
.crc = crc,
.ptag = 0,
// filter out ids
.filter.begin = begin,
.filter.end = end,
};
// commit regions which can't fend for themselves
err = cb(lfs, data, &commit);
if (err) {
if (err == LFS_ERR_NOSPC) {
goto split;
} else if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// move over other commits, leaving it up to lfs_commit_move to
// filter out duplicates, and the commit filtering to reassign ids
for (uint16_t id = begin; id < end; id++) {
err = lfs_commit_move(lfs,
&(struct lfs_commit_move){.dir=source, .id={id, id}},
&commit);
if (err) {
if (err == LFS_ERR_NOSPC) {
goto split;
} else if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
ack = id;
}
commit.end = lfs->cfg->block_size - 2*sizeof(uint32_t);
if (!lfs_pairisnull(dir->tail)) {
// TODO le32
err = lfs_commit_commit(lfs, &commit, (lfs_entry_t){
lfs_mktag(LFS_TYPE_SOFTTAIL + dir->split*0x10,
0x1ff, sizeof(dir->tail)),
.u.buffer=dir->tail});
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
err = lfs_commit_crc(lfs, &commit);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful compaction, swap dir pair to indicate most recent
lfs_pairswap(dir->pair);
dir->off = commit.off;
dir->etag = commit.ptag;
dir->erased = true;
}
break;
split:
// commit no longer fits, need to split dir,
// drop caches and create tail
lfs->pcache.block = 0xffffffff;
lfs_dir_t tail;
int err = lfs_dir_alloc(lfs, &tail, dir->split, dir->tail);
if (err) {
return err;
}
err = lfs_dir_compact(lfs, &tail, cb, data, dir, ack+1, end);
if (err) {
return err;
}
end = ack+1;
dir->tail[0] = tail.pair[0];
dir->tail[1] = tail.pair[1];
dir->split = true;
continue;
relocate:
//commit was corrupted
LFS_DEBUG("Bad block at %d", dir->pair[1]);
// drop caches and prepare to relocate block
relocated = true;
lfs->pcache.block = 0xffffffff;
// can't relocate superblock, filesystem is now frozen
if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
LFS_WARN("Superblock %d has become unwritable", oldpair[1]);
return LFS_ERR_CORRUPT;
}
// relocate half of pair
err = lfs_alloc(lfs, &dir->pair[1]);
if (err) {
return err;
}
continue;
}
if (relocated) {
// update references if we relocated
LFS_DEBUG("Relocating %d %d to %d %d",
oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
int err = lfs_relocate(lfs, oldpair, dir->pair);
if (err) {
return err;
}
}
// shift over any directories that are affected
for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
if (lfs_paircmp(d->pair, dir->pair) == 0) {
d->pair[0] = dir->pair[0];
d->pair[1] = dir->pair[1];
}
}
return 0;
}
static int lfs_dir_commitwith(lfs_t *lfs, lfs_dir_t *dir,
int (*cb)(lfs_t *lfs, void *data, struct lfs_commit *commit),
void *data) {
if (!dir->erased) {
// not erased, must compact
return lfs_dir_compact(lfs, dir, cb, data, dir, 0, dir->count);
}
struct lfs_commit commit = {
.block = dir->pair[0],
.begin = dir->off,
.off = dir->off,
.end = lfs->cfg->block_size - 2*sizeof(uint32_t),
.crc = 0xffffffff,
.ptag = dir->etag,
.filter.begin = 0,
.filter.end = 0x1ff,
};
int err = cb(lfs, data, &commit);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
return lfs_dir_compact(lfs, dir, cb, data, dir, 0, dir->count);
}
return err;
}
err = lfs_commit_crc(lfs, &commit);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
return lfs_dir_compact(lfs, dir, cb, data, dir, 0, dir->count);
}
return err;
}
// successful commit, lets update dir
dir->off = commit.off;
dir->etag = commit.ptag;
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir,
const lfs_entrylist_t *regions) {
return lfs_dir_commitwith(lfs, dir, lfs_commit_regions, (void*)regions);
}
static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir, uint16_t *id) {
*id = dir->count;
dir->count += 1;
return 0;
}
static int lfs_dir_delete(lfs_t *lfs, lfs_dir_t *dir, uint16_t id) {
dir->count -= 1;
return lfs_dir_commit(lfs, dir, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_DELETE, id, 0)}});
}
struct lfs_dir_getter {
uint32_t mask;
lfs_tag_t tag;
lfs_entry_t *entry;
};
static int lfs_dir_getter(lfs_t *lfs, void *p, lfs_entry_t entry) {
struct lfs_dir_getter *get = p;
if ((entry.tag & get->mask) == (get->tag & get->mask)) {
if (get->entry) {
*get->entry = entry;
}
return true;
}
return false;
}
static int lfs_dir_get(lfs_t *lfs, lfs_dir_t *dir,
uint32_t mask, lfs_entry_t *entry) {
int res = lfs_dir_traverse(lfs, dir, lfs_dir_getter,
&(struct lfs_dir_getter){mask, entry->tag, entry});
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_NOENT;
}
return 0;
}
static int lfs_dir_getbuffer(lfs_t *lfs, lfs_dir_t *dir,
uint32_t mask, lfs_entry_t *entry) {
void *buffer = entry->u.buffer;
lfs_size_t size = lfs_tag_size(entry->tag);
int err = lfs_dir_get(lfs, dir, mask, entry);
if (err) {
return err;
}
lfs_size_t diff = lfs_min(size, lfs_tag_size(entry->tag));
memset((uint8_t*)buffer + diff, 0, size - diff);
err = lfs_bd_read(lfs, entry->u.d.block, entry->u.d.off, buffer, diff);
if (err) {
return err;
}
if (lfs_tag_size(entry->tag) > size) {
return LFS_ERR_RANGE;
}
return 0;
}
static int lfs_dir_getentry(lfs_t *lfs, lfs_dir_t *dir,
uint32_t mask, lfs_tag_t tag, lfs_entry_t *entry) {
entry->tag = tag | sizeof(entry->u);
entry->u.buffer = &entry->u;
int err = lfs_dir_getbuffer(lfs, dir, mask, entry);
if (err && err != LFS_ERR_RANGE) {
return err;
}
return 0;
}
static int lfs_dir_getinfo(lfs_t *lfs, lfs_dir_t *dir,
int16_t id, struct lfs_info *info) {
if (id < 0) {
// special case for root
strcpy(info->name, "/");
info->type = LFS_TYPE_DIR;
return 0;
}
lfs_entry_t entry;
int err = lfs_dir_getentry(lfs, dir, 0x701ff000,
lfs_mktag(LFS_TYPE_REG, id, 0), &entry);
if (err) {
return err;
}
info->type = lfs_tag_subtype(entry.tag);
if (lfs_tag_type(entry.tag) == (LFS_TYPE_REG | LFS_STRUCT_CTZ)) {
info->size = entry.u.ctz.size;
} else if (lfs_tag_type(entry.tag) == (LFS_TYPE_REG | LFS_STRUCT_INLINE)) {
info->size = lfs_tag_size(entry.tag);
}
err = lfs_dir_getbuffer(lfs, dir, 0x7ffff000, &(lfs_entry_t){
lfs_mktag(LFS_TYPE_NAME, id, lfs->cfg->name_size+1),
.u.buffer=info->name});
if (err) {
return err;
}
return 0;
}
struct lfs_dir_finder {
const char *name;
uint16_t len;
int16_t id;
};
static int lfs_dir_finder(lfs_t *lfs, void *p, lfs_entry_t entry) {
struct lfs_dir_finder *find = p;
if (lfs_tag_type(entry.tag) == LFS_TYPE_NAME &&
lfs_tag_size(entry.tag) == find->len) {
int res = lfs_bd_cmp(lfs, entry.u.d.block, entry.u.d.off,
find->name, find->len);
if (res < 0) {
return res;
}
if (res) {
// found a match
find->id = lfs_tag_id(entry.tag);
}
} else if (lfs_tag_type(entry.tag) == LFS_TYPE_DELETE) {
if (lfs_tag_id(entry.tag) == find->id) {
find->id = -1;
} else if (lfs_tag_id(entry.tag) < find->id) {
find->id -= 1;
}
}
return 0;
}
// TODO drop others, make this only return id, also make get take in only entry to populate (with embedded tag)
static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
const char **path, int16_t *id) {
lfs_entry_t entry = {
.u.pair[0] = lfs->root[0],
.u.pair[1] = lfs->root[1],
};
struct lfs_dir_finder find = {
.name = *path,
};
while (true) {
nextname:
// skip slashes
find.name += strspn(find.name, "/");
find.len = strcspn(find.name, "/");
// special case for root dir
if (find.name[0] == '\0') {
// TODO set up root?
*id = -1;
return 0;
}
// skip '.' and root '..'
if ((find.len == 1 && memcmp(find.name, ".", 1) == 0) ||
(find.len == 2 && memcmp(find.name, "..", 2) == 0)) {
find.name += find.len;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = find.name + find.len;
lfs_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
find.name = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// update what we've found
*path = find.name;
// find path
while (true) {
find.id = -1;
int err = lfs_dir_fetchwith(lfs, dir, entry.u.pair,
lfs_dir_finder, &find);
if (err) {
return err;
}
if (find.id >= 0) {
// found it
break;
}
if (lfs_pairisnull(dir->tail)) {
return LFS_ERR_NOENT;
}
entry.u.pair[0] = dir->tail[0];
entry.u.pair[1] = dir->tail[1];
}
// TODO handle moves
// // check that entry has not been moved
// if (entry->d.type & LFS_STRUCT_MOVED) {
// int moved = lfs_moved(lfs, &entry->d.u);
// if (moved < 0 || moved) {
// return (moved < 0) ? moved : LFS_ERR_NOENT;
// }
//
// entry->d.type &= ~LFS_STRUCT_MOVED;
// }
*id = find.id;
find.name += find.len;
find.name += strspn(find.name, "/");
if (find.name[0] == '\0') {
return 0;
}
// TODO optimize grab for inline files and like?
// TODO would this mean more code?
// grab the entry data
int err = lfs_dir_getentry(lfs, dir, 0x701ff000,
lfs_mktag(LFS_TYPE_REG, find.id, 0), &entry);
if (err) {
return err;
}
// continue on if we hit a directory
// TODO update with what's on master?
if (lfs_tag_subtype(entry.tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
}
}
//static int lfs_dir_findbuffer(lfs_t *lfs, lfs_dir_t *dir,
// const char **path, lfs_entry_t *entry) {
// void *buffer = entry->u.buffer;
// lfs_size_t size = lfs_tag_size(entry->tag);
// int err = lfs_dir_find(lfs, dir, path, entry);
// if (err) {
// return err;
// }
//
// lfs_size_t diff = lfs_min(size, lfs_tag_size(entry->tag));
// memset((uint8_t*)buffer + diff, 0, size - diff);
// // TODO hmm
// if (lfs_tag_valid(entry->tag)) {
// memcpy(buffer, entry->u.buffer, diff);
// } else {
// err = lfs_bd_read(lfs, entry->u.d.block, entry->u.d.off, buffer, diff);
// if (err) {
// return err;
// }
// }
//
// if (lfs_tag_size(entry->tag) > size) {
// return LFS_ERR_RANGE;
// }
//
// return 0;
//}
//
//static int lfs_dir_findentry(lfs_t *lfs, lfs_dir_t *dir,
// const char **path, lfs_entry_t *entry) {
// entry->tag = sizeof(entry->u);
// entry->u.buffer = &entry->u;
// return lfs_dir_findbuffer(lfs, dir, path, entry);
//}
//////////////////////////////////////////////////////////
//static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) {
// // allocate pair of dir blocks
// for (int i = 0; i < 2; i++) {
// int err = lfs_alloc(lfs, &dir->pair[i]);
// if (err) {
// return err;
// }
// }
//
// // rather than clobbering one of the blocks we just pretend
// // the revision may be valid
// int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->d.rev, 4);
// dir->d.rev = lfs_fromle32(dir->d.rev);
// if (err) {
// return err;
// }
//
// // set defaults
// dir->d.rev += 1;
// dir->d.size = sizeof(dir->d)+4;
// dir->d.tail[0] = 0xffffffff;
// dir->d.tail[1] = 0xffffffff;
// dir->off = sizeof(dir->d);
//
// // don't write out yet, let caller take care of that
// return 0;
//}
//
//static int lfs_dir_fetch(lfs_t *lfs,
// lfs_dir_t *dir, const lfs_block_t pair[2]) {
// // copy out pair, otherwise may be aliasing dir
// const lfs_block_t tpair[2] = {pair[0], pair[1]};
// bool valid = false;
//
// // check both blocks for the most recent revision
// for (int i = 0; i < 2; i++) {
// struct lfs_disk_dir test;
// int err = lfs_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
// lfs_dir_fromle32(&test);
// if (err) {
// return err;
// }
//
// if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
// continue;
// }
//
// if ((0x7fffffff & test.size) < sizeof(test)+4 ||
// (0x7fffffff & test.size) > lfs->cfg->block_size) {
// continue;
// }
//
// uint32_t crc = 0xffffffff;
// lfs_dir_tole32(&test);
// lfs_crc(&crc, &test, sizeof(test));
// lfs_dir_fromle32(&test);
// err = lfs_bd_crc(lfs, tpair[i], sizeof(test),
// (0x7fffffff & test.size) - sizeof(test), &crc);
// if (err) {
// return err;
// }
//
// if (crc != 0) {
// continue;
// }
//
// valid = true;
//
// // setup dir in case it's valid
// dir->pair[0] = tpair[(i+0) % 2];
// dir->pair[1] = tpair[(i+1) % 2];
// dir->off = sizeof(dir->d);
// dir->d = test;
// }
//
// if (!valid) {
// LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]);
// return LFS_ERR_CORRUPT;
// }
//
// return 0;
//}
//
//struct lfs_region {
// enum {
// LFS_FROM_MEM,
// LFS_FROM_REGION,
// LFS_FROM_ATTRS,
// } type;
//
// lfs_off_t oldoff;
// lfs_size_t oldsize;
// const void *buffer;
// lfs_size_t newsize;
//};
//
//struct lfs_region_attrs {
// const struct lfs_attr *attrs;
// int count;
//};
//
//struct lfs_region_region {
// lfs_block_t block;
// lfs_off_t off;
// struct lfs_region *regions;
// int count;
//};
//
//static int lfs_commit_region(lfs_t *lfs, uint32_t *crc,
// lfs_block_t oldblock, lfs_off_t oldoff,
// lfs_block_t newblock, lfs_off_t newoff,
// lfs_off_t regionoff, lfs_size_t regionsize,
// const struct lfs_region *regions, int count) {
// int i = 0;
// lfs_size_t newend = newoff + regionsize;
// while (newoff < newend) {
// // commit from different types of regions
// if (i < count && regions[i].oldoff == oldoff - regionoff) {
// switch (regions[i].type) {
// case LFS_FROM_MEM: {
// lfs_crc(crc, regions[i].buffer, regions[i].newsize);
// int err = lfs_bd_prog(lfs, newblock, newoff,
// regions[i].buffer, regions[i].newsize);
// if (err) {
// return err;
// }
// newoff += regions[i].newsize;
// oldoff += regions[i].oldsize;
// break;
// }
// case LFS_FROM_REGION: {
// const struct lfs_region_region *disk = regions[i].buffer;
// int err = lfs_commit_region(lfs, crc,
// disk->block, disk->off,
// newblock, newoff,
// disk->off, regions[i].newsize,
// disk->regions, disk->count);
// if (err) {
// return err;
// }
// newoff += regions[i].newsize;
// oldoff -= regions[i].oldsize;
// break;
// }
// case LFS_FROM_ATTRS: {
// const struct lfs_region_attrs *attrs = regions[i].buffer;
//
// // order doesn't matter, so we write new attrs first. this
// // is still O(n^2) but only O(n) disk access
// for (int j = 0; j < attrs->count; j++) {
// if (attrs->attrs[j].size == 0) {
// continue;
// }
//
// lfs_entry_attr_t attr;
// attr.d.type = attrs->attrs[j].type;
// attr.d.len = attrs->attrs[j].size;
//
// lfs_crc(crc, &attr.d, sizeof(attr.d));
// int err = lfs_bd_prog(lfs, newblock, newoff,
// &attr.d, sizeof(attr.d));
// if (err) {
// return err;
// }
//
// lfs_crc(crc,
// attrs->attrs[j].buffer, attrs->attrs[j].size);
// err = lfs_bd_prog(lfs, newblock, newoff+sizeof(attr.d),
// attrs->attrs[j].buffer, attrs->attrs[j].size);
// if (err) {
// return err;
// }
//
// newoff += 2+attrs->attrs[j].size;
// }
//
// // copy over attributes without updates
// lfs_off_t oldend = oldoff + regions[i].oldsize;
// while (oldoff < oldend) {
// lfs_entry_attr_t attr;
// int err = lfs_bd_read(lfs, oldblock, oldoff,
// &attr.d, sizeof(attr.d));
// if (err) {
// return err;
// }
//
// bool updating = false;
// for (int j = 0; j < attrs->count; j++) {
// if (attr.d.type == attrs->attrs[j].type) {
// updating = true;
// }
// }
//
// if (!updating) {
// err = lfs_commit_region(lfs, crc,
// oldblock, oldoff,
// newblock, newoff,
// 0, 2+attr.d.len,
// NULL, 0);
// if (err) {
// return err;
// }
//
// newoff += 2+attr.d.len;
// }
//
// oldoff += 2+attr.d.len;
// }
//
// break;
// }
// }
//
// i += 1;
// } else {
// // copy data from old block if not covered by entry
// uint8_t data;
// int err = lfs_bd_read(lfs, oldblock, oldoff, &data, 1);
// if (err) {
// return err;
// }
//
// lfs_crc(crc, &data, 1);
// err = lfs_bd_prog(lfs, newblock, newoff, &data, 1);
// if (err) {
// return err;
// }
//
// oldoff += 1;
// newoff += 1;
// }
// }
//
// // sanity check our commit math
// LFS_ASSERT(newoff == newend);
// return 0;
//}
//
//static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir,
// const struct lfs_region *regions, int count) {
// // state for copying over
// const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
// bool relocated = false;
//
// // increment revision count
// dir->d.rev += 1;
//
// // keep pairs in order such that pair[0] is most recent
// lfs_pairswap(dir->pair);
// for (int i = 0; i < count; i++) {
// dir->d.size += regions[i].newsize;
// dir->d.size -= regions[i].oldsize;
// }
//
// while (true) {
// if (true) {
// int err = lfs_bd_erase(lfs, dir->pair[0]);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // commit header
// uint32_t crc = 0xffffffff;
// lfs_dir_tole32(&dir->d);
// lfs_crc(&crc, &dir->d, sizeof(dir->d));
// err = lfs_bd_prog(lfs, dir->pair[0], 0, &dir->d, sizeof(dir->d));
// lfs_dir_fromle32(&dir->d);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // commit entry
// err = lfs_commit_region(lfs, &crc,
// dir->pair[1], sizeof(dir->d),
// dir->pair[0], sizeof(dir->d),
// 0, (0x7fffffff & dir->d.size)-sizeof(dir->d)-4,
// regions, count);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // commit crc
// crc = lfs_tole32(crc);
// err = lfs_bd_prog(lfs, dir->pair[0],
// (0x7fffffff & dir->d.size)-4, &crc, 4);
// crc = lfs_fromle32(crc);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// err = lfs_bd_sync(lfs);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // successful commit, check checksum to make sure
// uint32_t ncrc = 0xffffffff;
// err = lfs_bd_crc(lfs, dir->pair[0], 0,
// (0x7fffffff & dir->d.size)-4, &ncrc);
// if (err) {
// return err;
// }
//
// if (ncrc != crc) {
// goto relocate;
// }
// }
//
// break;
//
//relocate:
// //commit was corrupted
// LFS_DEBUG("Bad block at %d", dir->pair[0]);
//
// // drop caches and prepare to relocate block
// relocated = true;
// lfs->pcache.block = 0xffffffff;
//
// // can't relocate superblock, filesystem is now frozen
// if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
// LFS_WARN("Superblock %d has become unwritable", oldpair[0]);
// return LFS_ERR_CORRUPT;
// }
//
// // relocate half of pair
// int err = lfs_alloc(lfs, &dir->pair[0]);
// if (err) {
// return err;
// }
// }
//
// if (relocated) {
// // update references if we relocated
// LFS_DEBUG("Relocating %d %d to %d %d",
// oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
// int err = lfs_relocate(lfs, oldpair, dir->pair);
// if (err) {
// return err;
// }
// }
//
// // shift over any directories that are affected
// for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
// if (lfs_paircmp(d->pair, dir->pair) == 0) {
// d->pair[0] = dir->pair[0];
// d->pair[1] = dir->pair[1];
// }
// }
//
// return 0;
//}
//
//static int lfs_dir_get(lfs_t *lfs, const lfs_dir_t *dir,
// lfs_off_t off, void *buffer, lfs_size_t size) {
// return lfs_bd_read(lfs, dir->pair[0], off, buffer, size);
//}
//
//static int lfs_dir_set(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry,
// struct lfs_region *regions, int count) {
// return -999;
//// lfs_ssize_t diff = 0;
//// for (int i = 0; i < count; i++) {
//// diff += regions[i].newsize;
//// diff -= regions[i].oldsize;
//// }
////
//// lfs_size_t oldsize = entry->size;
//// if (entry->off == 0) {
//// entry->off = (0x7fffffff & dir->d.size) - 4;
//// }
////
//// if ((0x7fffffff & dir->d.size) + diff > lfs->cfg->block_size) {
//// lfs_dir_t olddir = *dir;
//// lfs_off_t oldoff = entry->off;
////
//// if (oldsize) {
//// // mark as moving
//// uint8_t type;
//// int err = lfs_dir_get(lfs, &olddir, oldoff, &type, 1);
//// if (err) {
//// return err;
//// }
////
//// type |= LFS_STRUCT_MOVED;
//// err = lfs_dir_commit(lfs, &olddir, (struct lfs_region[]){
//// {LFS_FROM_MEM, oldoff, 1, &type, 1}}, 1);
//// if (err) {
//// return err;
//// }
//// }
////
//// lfs_dir_t pdir = olddir;
////
//// // find available block or create a new one
//// while ((0x7fffffff & dir->d.size) + oldsize + diff
//// > lfs->cfg->block_size) {
//// // we need to allocate a new dir block
//// if (!(0x80000000 & dir->d.size)) {
//// pdir = *dir;
//// int err = lfs_dir_alloc(lfs, dir);
//// if (err) {
//// return err;
//// }
////
//// dir->d.tail[0] = pdir.d.tail[0];
//// dir->d.tail[1] = pdir.d.tail[1];
////
//// break;
//// }
////
//// int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
//// if (err) {
//// return err;
//// }
//// }
////
//// // writing out new entry
//// entry->off = dir->d.size - 4;
//// entry->size += diff;
//// int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
//// {LFS_FROM_REGION, entry->off, 0, &(struct lfs_region_region){
//// olddir.pair[0], oldoff,
//// regions, count}, entry->size}}, 1);
//// if (err) {
//// return err;
//// }
////
//// // update pred dir, unless pred == old we can coalesce
//// if (!oldsize || lfs_paircmp(pdir.pair, olddir.pair) != 0) {
//// pdir.d.size |= 0x80000000;
//// pdir.d.tail[0] = dir->pair[0];
//// pdir.d.tail[1] = dir->pair[1];
////
//// err = lfs_dir_commit(lfs, &pdir, NULL, 0);
//// if (err) {
//// return err;
//// }
//// } else if (oldsize) {
//// olddir.d.size |= 0x80000000;
//// olddir.d.tail[0] = dir->pair[0];
//// olddir.d.tail[1] = dir->pair[1];
//// }
////
//// // remove old entry
//// if (oldsize) {
//// lfs_entry_t oldentry;
//// oldentry.off = oldoff;
//// err = lfs_dir_set(lfs, &olddir, &oldentry, (struct lfs_region[]){
//// {LFS_FROM_MEM, 0, oldsize, NULL, 0}}, 1);
//// if (err) {
//// return err;
//// }
//// }
////
//// goto shift;
//// }
////
//// if ((0x7fffffff & dir->d.size) + diff == sizeof(dir->d)+4) {
//// lfs_dir_t pdir;
//// int res = lfs_pred(lfs, dir->pair, &pdir);
//// if (res < 0) {
//// return res;
//// }
////
//// if (pdir.d.size & 0x80000000) {
//// pdir.d.size &= dir->d.size | 0x7fffffff;
//// pdir.d.tail[0] = dir->d.tail[0];
//// pdir.d.tail[1] = dir->d.tail[1];
//// int err = lfs_dir_commit(lfs, &pdir, NULL, 0);
//// if (err) {
//// return err;
//// }
//// goto shift;
//// }
//// }
////
//// for (int i = 0; i < count; i++) {
//// regions[i].oldoff += entry->off;
//// }
////
//// int err = lfs_dir_commit(lfs, dir, regions, count);
//// if (err) {
//// return err;
//// }
////
//// entry->size += diff;
////
////shift:
//// // shift over any files/directories that are affected
//// for (lfs_file_t *f = lfs->files; f; f = f->next) {
//// if (lfs_paircmp(f->pair, dir->pair) == 0) {
//// if (f->pairoff == entry->off && entry->size == 0) {
//// f->pair[0] = 0xffffffff;
//// f->pair[1] = 0xffffffff;
//// } else if (f->pairoff > entry->off) {
//// f->pairoff += diff;
//// }
//// }
//// }
////
//// for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
//// if (lfs_paircmp(d->pair, dir->pair) == 0) {
//// if (d->off > entry->off) {
//// d->off += diff;
//// d->pos += diff;
//// }
//// }
//// }
////
//// return 0;
//}
//
//static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
// while (dir->off >= (0x7fffffff & dir->d.size)-4) {
// if (!(0x80000000 & dir->d.size)) {
// entry->off = dir->off;
// return LFS_ERR_NOENT;
// }
//
// int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
// if (err) {
// return err;
// }
//
// dir->off = sizeof(dir->d);
// dir->pos += sizeof(dir->d) + 4;
// }
//
// int err = lfs_dir_get(lfs, dir, dir->off, &entry->d, sizeof(entry->d));
// lfs_entry_fromle32(&entry->d);
// if (err) {
// return err;
// }
//
// entry->off = dir->off;
// entry->size = lfs_entry_size(entry);
// dir->off += entry->size;
// dir->pos += entry->size;
// return 0;
//}
//
//static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
// lfs_entry_t *entry, const char **path) {
// const char *pathname = *path;
// lfs_size_t pathlen;
//
// while (true) {
// nextname:
// // skip slashes
// pathname += strspn(pathname, "/");
// pathlen = strcspn(pathname, "/");
//
// // special case for root dir
// if (pathname[0] == '\0') {
// *entry = (lfs_entry_t){
// .d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR,
// .d.u.dir[0] = lfs->root[0],
// .d.u.dir[1] = lfs->root[1],
// };
// return 0;
// }
//
// // skip '.' and root '..'
// if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) ||
// (pathlen == 2 && memcmp(pathname, "..", 2) == 0)) {
// pathname += pathlen;
// goto nextname;
// }
//
// // skip if matched by '..' in name
// const char *suffix = pathname + pathlen;
// lfs_size_t sufflen;
// int depth = 1;
// while (true) {
// suffix += strspn(suffix, "/");
// sufflen = strcspn(suffix, "/");
// if (sufflen == 0) {
// break;
// }
//
// if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
// depth -= 1;
// if (depth == 0) {
// pathname = suffix + sufflen;
// goto nextname;
// }
// } else {
// depth += 1;
// }
//
// suffix += sufflen;
// }
//
// // update what we've found
// *path = pathname;
//
// // find path
// while (true) {
// int err = lfs_dir_next(lfs, dir, entry);
// if (err) {
// return err;
// }
//
// if (((0xf & entry->d.type) != LFS_TYPE_REG &&
// (0xf & entry->d.type) != LFS_TYPE_DIR) ||
// entry->d.nlen != pathlen) {
// continue;
// }
//
// int res = lfs_bd_cmp(lfs, dir->pair[0],
// entry->off + entry->size - pathlen,
// pathname, pathlen);
// if (res < 0) {
// return res;
// }
//
// // found match
// if (res) {
// break;
// }
// }
//
// // check that entry has not been moved
// if (entry->d.type & LFS_STRUCT_MOVED) {
// int moved = lfs_moved(lfs, &entry->d.u);
// if (moved < 0 || moved) {
// return (moved < 0) ? moved : LFS_ERR_NOENT;
// }
//
// entry->d.type &= ~LFS_STRUCT_MOVED;
// }
//
// pathname += pathlen;
// pathname += strspn(pathname, "/");
// if (pathname[0] == '\0') {
// return 0;
// }
//
// // continue on if we hit a directory
// if ((0xf & entry->d.type) != LFS_TYPE_DIR) {
// return LFS_ERR_NOTDIR;
// }
//
// int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
// if (err) {
// return err;
// }
// }
//}
//
/// Internal attribute operations ///
//static int lfs_dir_getinfo(lfs_t *lfs,
// lfs_dir_t *dir, const lfs_entry_t *entry, struct lfs_info *info) {
// memset(info, 0, sizeof(*info));
// info->type = 0xf & entry->d.type;
// if (entry->d.type == (LFS_STRUCT_CTZ | LFS_TYPE_REG)) {
// info->size = entry->d.u.file.size;
// } else if (entry->d.type == (LFS_STRUCT_INLINE | LFS_TYPE_REG)) {
// info->size = lfs_entry_elen(entry);
// }
//
// if (lfs_paircmp(entry->d.u.dir, lfs->root) == 0) {
// strcpy(info->name, "/");
// } else {
// int err = lfs_dir_get(lfs, dir,
// entry->off + entry->size - entry->d.nlen,
// info->name, entry->d.nlen);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//
//static int lfs_dir_getattrs(lfs_t *lfs,
// lfs_dir_t *dir, const lfs_entry_t *entry,
// const struct lfs_attr *attrs, int count) {
// // set to zero in case we can't find the attributes or size mismatch
// for (int j = 0; j < count; j++) {
// memset(attrs[j].buffer, 0, attrs[j].size);
// }
//
// // search for attribute in attribute entry
// lfs_off_t off = entry->off + 4+lfs_entry_elen(entry);
// lfs_off_t end = off + lfs_entry_alen(entry);
// while (off < end) {
// lfs_entry_attr_t attr;
// int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d));
// if (err) {
// return err;
// }
//
// for (int j = 0; j < count; j++) {
// if (attrs[j].type == attr.d.type) {
// if (attrs[j].size < attr.d.len) {
// return LFS_ERR_RANGE;
// }
//
// err = lfs_dir_get(lfs, dir, off+sizeof(attr.d),
// attrs[j].buffer, attr.d.len);
// if (err) {
// return err;
// }
// }
// }
//
// off += 2+attr.d.len;
// }
//
// return 0;
//}
//
//static lfs_ssize_t lfs_dir_checkattrs(lfs_t *lfs,
// lfs_dir_t *dir, lfs_entry_t *entry,
// const struct lfs_attr *attrs, int count) {
// // check that attributes fit
// // two separate passes so disk access is O(n)
// lfs_size_t nsize = 0;
// for (int j = 0; j < count; j++) {
// if (attrs[j].size > 0) {
// nsize += 2+attrs[j].size;
// }
// }
//
// lfs_off_t off = entry->off + 4+lfs_entry_elen(entry);
// lfs_off_t end = off + lfs_entry_alen(entry);
// while (off < end) {
// lfs_entry_attr_t attr;
// int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d));
// if (err) {
// return err;
// }
//
// bool updated = false;
// for (int j = 0; j < count; j++) {
// if (attr.d.type == attrs[j].type) {
// updated = true;
// }
// }
//
// if (!updated) {
// nsize += 2+attr.d.len;
// }
//
// off += 2+attr.d.len;
// }
//
// if (nsize > lfs->attrs_size || (
// lfs_entry_size(entry) - lfs_entry_alen(entry) + nsize
// > lfs->cfg->block_size)) {
// return LFS_ERR_NOSPC;
// }
//
// return nsize;
//}
//
//static int lfs_dir_setattrs(lfs_t *lfs,
// lfs_dir_t *dir, lfs_entry_t *entry,
// const struct lfs_attr *attrs, int count) {
// // make sure attributes fit
// lfs_size_t oldlen = lfs_entry_alen(entry);
// lfs_ssize_t newlen = lfs_dir_checkattrs(lfs, dir, entry, attrs, count);
// if (newlen < 0) {
// return newlen;
// }
//
// // commit to entry, majority of work is in LFS_FROM_ATTRS
// entry->d.alen = (0xc0 & entry->d.alen) | newlen;
// return lfs_dir_set(lfs, dir, entry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, 4, &entry->d, 4},
// {LFS_FROM_ATTRS, 4+lfs_entry_elen(entry), oldlen,
// &(struct lfs_region_attrs){attrs, count}, newlen}}, 2);
//}
//
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
if (!lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
lfs_dir_t cwd;
int err = lfs_dir_find(lfs, &cwd, &path, &(int16_t){0});
if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) {
if (!err) {
return LFS_ERR_EXIST;
}
return err;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_size) {
return LFS_ERR_NAMETOOLONG;
}
// build up new directory
lfs_alloc_ack(lfs);
lfs_dir_t dir;
err = lfs_dir_alloc(lfs, &dir, false, cwd.tail);
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &dir, NULL);
if (err) {
return err;
}
// get next slot and commit
uint16_t id;
err = lfs_dir_append(lfs, &cwd, &id);
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &cwd, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_NAME, id, nlen),
.u.buffer=(void*)path}, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_DIR | LFS_STRUCT_DIR, id, sizeof(dir.pair)),
.u.buffer=dir.pair}}});
// TODO need ack here?
lfs_alloc_ack(lfs);
return 0;
}
//int lfs_mkdir(lfs_t *lfs, const char *path) {
// // deorphan if we haven't yet, needed at most once after poweron
// if (!lfs->deorphaned) {
// int err = lfs_deorphan(lfs);
// if (err) {
// return err;
// }
// }
//
// // fetch parent directory
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, &cwd, &entry, &path);
// if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) {
// return err ? err : LFS_ERR_EXIST;
// }
//
// // check that name fits
// lfs_size_t nlen = strlen(path);
// if (nlen > lfs->name_size) {
// return LFS_ERR_NAMETOOLONG;
// }
//
// // build up new directory
// lfs_alloc_ack(lfs);
//
// lfs_dir_t dir;
// err = lfs_dir_alloc(lfs, &dir);
// if (err) {
// return err;
// }
// dir.d.tail[0] = cwd.d.tail[0];
// dir.d.tail[1] = cwd.d.tail[1];
//
// err = lfs_dir_commit(lfs, &dir, NULL, 0);
// if (err) {
// return err;
// }
//
// entry.d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR;
// entry.d.elen = sizeof(entry.d) - 4;
// entry.d.alen = 0;
// entry.d.nlen = nlen;
// entry.d.u.dir[0] = dir.pair[0];
// entry.d.u.dir[1] = dir.pair[1];
// entry.size = 0;
//
// cwd.d.tail[0] = dir.pair[0];
// cwd.d.tail[1] = dir.pair[1];
// lfs_entry_tole32(&entry.d);
// err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, 0, &entry.d, sizeof(entry.d)},
// {LFS_FROM_MEM, 0, 0, path, nlen}}, 2);
// if (err) {
// return err;
// }
//
// lfs_alloc_ack(lfs);
// return 0;
//}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
int16_t id;
int err = lfs_dir_find(lfs, dir, &path, &id);
if (err) {
return err;
}
lfs_entry_t entry;
if (id < 0) {
// handle root dir separately
entry.u.pair[0] = lfs->root[0];
entry.u.pair[1] = lfs->root[1];
} else {
// get dir pair from parent
err = lfs_dir_getentry(lfs, dir, 0x701ff000,
lfs_mktag(LFS_TYPE_REG, id, 0), &entry);
if (err) {
return err;
}
if (lfs_tag_subtype(entry.tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
}
// fetch first pair
err = lfs_dir_fetch(lfs, dir, entry.u.pair);
if (err) {
return err;
}
// setup head dir
dir->head[0] = dir->pair[0];
dir->head[1] = dir->pair[1];
dir->pos = 0;
dir->id = 0;
// add to list of directories
dir->next = lfs->dirs;
lfs->dirs = dir;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// remove from list of directories
for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) {
if (*p == dir) {
*p = dir->next;
break;
}
}
return 0;
}
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == 0) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return 1;
} else if (dir->pos == 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return 1;
}
while (true) {
if (dir->id == dir->count) {
if (!dir->split) {
return false;
}
int err = lfs_dir_fetch(lfs, dir, dir->tail);
if (err) {
return err;
}
dir->id = 0;
}
int err = lfs_dir_getinfo(lfs, dir, dir->id, info);
if (err && err != LFS_ERR_NOENT) {
return err;
}
dir->id += 1;
if (err != LFS_ERR_NOENT) {
break;
}
}
dir->pos += 1;
return true;
}
// TODO does this work?
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// simply walk from head dir
int err = lfs_dir_rewind(lfs, dir);
if (err) {
return err;
}
// first two for ./..
dir->id = lfs_min(2 + dir->count, off);
dir->pos += dir->id;
off -= dir->id;
while (off != 0) {
if (dir->id == dir->count) {
if (!dir->split) {
return LFS_ERR_INVAL;
}
int err = lfs_dir_fetch(lfs, dir, dir->tail);
if (err) {
return err;
}
}
dir->id = lfs_min(dir->count, off);
dir->pos += dir->id;
off -= dir->id;
}
return 0;
}
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
(void)lfs;
return dir->pos;
}
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// reload the head dir
int err = lfs_dir_fetch(lfs, dir, dir->head);
if (err) {
return err;
}
dir->pair[0] = dir->head[0];
dir->pair[1] = dir->head[1];
dir->pos = 0;
dir->id = 0;
return 0;
}
//int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
// dir->pair[0] = lfs->root[0];
// dir->pair[1] = lfs->root[1];
//
// int err = lfs_dir_fetch(lfs, dir, dir->pair);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, dir, &entry, &path);
// if (err) {
// return err;
// } else if (entry.d.type != (LFS_STRUCT_DIR | LFS_TYPE_DIR)) {
// return LFS_ERR_NOTDIR;
// }
//
// err = lfs_dir_fetch(lfs, dir, entry.d.u.dir);
// if (err) {
// return err;
// }
//
// // setup head dir
// // special offset for '.' and '..'
// dir->head[0] = dir->pair[0];
// dir->head[1] = dir->pair[1];
// dir->pos = sizeof(dir->d) - 2;
// dir->off = sizeof(dir->d);
//
// // add to list of directories
// dir->next = lfs->dirs;
// lfs->dirs = dir;
//
// return 0;
//}
//
//int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// // remove from list of directories
// for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) {
// if (*p == dir) {
// *p = dir->next;
// break;
// }
// }
//
// return 0;
//}
//
//int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
// memset(info, 0, sizeof(*info));
//
// // special offset for '.' and '..'
// if (dir->pos == sizeof(dir->d) - 2) {
// info->type = LFS_TYPE_DIR;
// strcpy(info->name, ".");
// dir->pos += 1;
// return 1;
// } else if (dir->pos == sizeof(dir->d) - 1) {
// info->type = LFS_TYPE_DIR;
// strcpy(info->name, "..");
// dir->pos += 1;
// return 1;
// }
//
// lfs_entry_t entry;
// while (true) {
// int err = lfs_dir_next(lfs, dir, &entry);
// if (err) {
// return (err == LFS_ERR_NOENT) ? 0 : err;
// }
//
// if ((0xf & entry.d.type) != LFS_TYPE_REG &&
// (0xf & entry.d.type) != LFS_TYPE_DIR) {
// continue;
// }
//
// // check that entry has not been moved
// if (entry.d.type & LFS_STRUCT_MOVED) {
// int moved = lfs_moved(lfs, &entry.d.u);
// if (moved < 0) {
// return moved;
// }
//
// if (moved) {
// continue;
// }
//
// entry.d.type &= ~LFS_STRUCT_MOVED;
// }
//
// break;
// }
//
// int err = lfs_dir_getinfo(lfs, dir, &entry, info);
// if (err) {
// return err;
// }
//
// return 1;
//}
//
//int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// // simply walk from head dir
// int err = lfs_dir_rewind(lfs, dir);
// if (err) {
// return err;
// }
// dir->pos = off;
//
// while (off > (0x7fffffff & dir->d.size)) {
// off -= 0x7fffffff & dir->d.size;
// if (!(0x80000000 & dir->d.size)) {
// return LFS_ERR_INVAL;
// }
//
// err = lfs_dir_fetch(lfs, dir, dir->d.tail);
// if (err) {
// return err;
// }
// }
//
// dir->off = off;
// return 0;
//}
//
//lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
// (void)lfs;
// return dir->pos;
//}
//
//int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// // reload the head dir
// int err = lfs_dir_fetch(lfs, dir, dir->head);
// if (err) {
// return err;
// }
//
// dir->pair[0] = dir->head[0];
// dir->pair[1] = dir->head[1];
// dir->pos = sizeof(dir->d) - 2;
// dir->off = sizeof(dir->d);
// return 0;
//}
/// File index list operations ///
static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
lfs_off_t size = *off;
lfs_off_t b = lfs->cfg->block_size - 2*4;
lfs_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs_popc(i);
return i;
}
static int lfs_ctz_find(lfs_t *lfs,
lfs_cache_t *rcache, const lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
if (size == 0) {
*block = 0xffffffff;
*off = 0;
return 0;
}
lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
lfs_off_t target = lfs_ctz_index(lfs, &pos);
while (current > target) {
lfs_size_t skip = lfs_min(
lfs_npw2(current-target+1) - 1,
lfs_ctz(current));
int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4);
head = lfs_fromle32(head);
if (err) {
return err;
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
static int lfs_ctz_extend(lfs_t *lfs,
lfs_cache_t *rcache, lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
lfs_block_t *block, lfs_off_t *off) {
while (true) {
// go ahead and grab a block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
if (true) {
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
size -= 1;
lfs_off_t index = lfs_ctz_index(lfs, &size);
size += 1;
// just copy out the last block if it is incomplete
if (size != lfs->cfg->block_size) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t data;
err = lfs_cache_read(lfs, rcache, NULL,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs_cache_prog(lfs, pcache, rcache,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = size;
return 0;
}
// append block
index += 1;
lfs_size_t skips = lfs_ctz(index) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
head = lfs_tole32(head);
err = lfs_cache_prog(lfs, pcache, rcache,
nblock, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs_cache_read(lfs, rcache, NULL,
head, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
return err;
}
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
}
*block = nblock;
*off = 4*skips;
return 0;
}
relocate:
LFS_DEBUG("Bad block at %d", nblock);
// just clear cache and try a new block
pcache->block = 0xffffffff;
}
}
static int lfs_ctz_traverse(lfs_t *lfs,
lfs_cache_t *rcache, const lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
int (*cb)(lfs_t*, void*, lfs_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
while (true) {
int err = cb(lfs, data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs_block_t heads[2];
int count = 2 - (index & 1);
err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4);
heads[0] = lfs_fromle32(heads[0]);
heads[1] = lfs_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(lfs, data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & 3) != LFS_O_RDONLY && !lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
// allocate entry for file if it doesn't exist
lfs_dir_t cwd;
int16_t id;
int err = lfs_dir_find(lfs, &cwd, &path, &id);
if (err && (err != LFS_ERR_NOENT || strchr(path, '/') != NULL)) {
return err;
}
lfs_entry_t entry;
if (err == LFS_ERR_NOENT) {
if (!(flags & LFS_O_CREAT)) {
return LFS_ERR_NOENT;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_size) {
return LFS_ERR_NAMETOOLONG;
}
// get next slot and create entry to remember name
err = lfs_dir_append(lfs, &cwd, &id);
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &cwd, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_NAME, id, nlen),
.u.buffer=(void*)path}, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, id, 0)}}});
if (err) {
return err;
}
entry.tag = lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, id, 0);
} else {
if (flags & LFS_O_EXCL) {
return LFS_ERR_EXIST;
}
entry.tag = lfs_mktag(LFS_TYPE_REG, id, 0);
err = lfs_dir_get(lfs, &cwd, 0x701ff000, &entry);
if (err) {
return err;
}
if (lfs_tag_subtype(entry.tag) != LFS_TYPE_REG) {
return LFS_ERR_ISDIR;
}
}
// setup file struct
file->pair[0] = cwd.pair[0];
file->pair[1] = cwd.pair[1];
file->id = id;
file->flags = flags;
file->pos = 0;
file->attrs = NULL;
// allocate buffer if needed
file->cache.block = 0xffffffff;
if (lfs->cfg->file_buffer) {
file->cache.buffer = lfs->cfg->file_buffer;
} else if ((file->flags & 3) == LFS_O_RDONLY) {
file->cache.buffer = lfs_malloc(lfs->cfg->read_size);
if (!file->cache.buffer) {
return LFS_ERR_NOMEM;
}
} else {
file->cache.buffer = lfs_malloc(lfs->cfg->prog_size);
if (!file->cache.buffer) {
return LFS_ERR_NOMEM;
}
}
if (lfs_tag_struct(entry.tag) == LFS_STRUCT_INLINE) {
// load inline files
file->head = 0xfffffffe;
file->size = lfs_tag_size(entry.tag);
file->flags |= LFS_F_INLINE;
file->cache.block = file->head;
file->cache.off = 0;
// don't always read (may be new file)
if (file->size > 0) {
err = lfs_bd_read(lfs, entry.u.d.block, entry.u.d.off,
file->cache.buffer, file->size);
if (err) {
lfs_free(file->cache.buffer);
return err;
}
}
} else {
// use ctz list from entry
err = lfs_bd_read(lfs, entry.u.d.block, entry.u.d.off,
&file->head, 2*sizeof(uint32_t));
}
// truncate if requested
if (flags & LFS_O_TRUNC) {
if (file->size != 0) {
file->flags |= LFS_F_DIRTY;
}
file->head = 0xfffffffe;
file->size = 0;
file->flags |= LFS_F_INLINE;
file->cache.block = file->head;
file->cache.off = 0;
}
// add to list of files
file->next = lfs->files;
lfs->files = file;
return 0;
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_sync(lfs, file);
// remove from list of files
for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) {
if (*p == file) {
*p = file->next;
break;
}
}
// clean up memory
if (!lfs->cfg->file_buffer) {
lfs_free(file->cache.buffer);
}
return err;
}
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
relocate:;
// just relocate what exists into new block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs_off_t i = 0; i < file->off; i++) {
uint8_t data;
err = lfs_cache_read(lfs, &lfs->rcache, &file->cache,
file->block, i, &data, 1);
if (err) {
return err;
}
err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size);
file->cache.block = lfs->pcache.block;
file->cache.off = lfs->pcache.off;
lfs->pcache.block = 0xffffffff;
file->block = nblock;
return 0;
}
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
if (file->flags & LFS_F_READING) {
file->flags &= ~LFS_F_READING;
}
if (file->flags & LFS_F_WRITING) {
lfs_off_t pos = file->pos;
if (!(file->flags & LFS_F_INLINE)) {
// copy over anything after current branch
lfs_file_t orig = {
.head = file->head,
.size = file->size,
.flags = LFS_O_RDONLY,
.pos = file->pos,
.cache = lfs->rcache,
};
lfs->rcache.block = 0xffffffff;
while (file->pos < file->size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs_file_write(lfs, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs->rcache.block != 0xffffffff) {
orig.cache.block = 0xffffffff;
lfs->rcache.block = 0xffffffff;
}
}
// write out what we have
while (true) {
int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS_DEBUG("Bad block at %d", file->block);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
}
} else {
file->size = lfs_max(file->pos, file->size);
}
// actual file updates
file->head = file->block;
file->size = file->pos;
file->flags &= ~LFS_F_WRITING;
file->flags |= LFS_F_DIRTY;
file->pos = pos;
}
return 0;
}
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
if ((file->flags & LFS_F_DIRTY) &&
!(file->flags & LFS_F_ERRED) &&
!lfs_pairisnull(file->pair)) {
// update dir entry
// TODO keep list of dirs including these guys for no
// need of another reload?
lfs_dir_t cwd;
err = lfs_dir_fetch(lfs, &cwd, file->pair);
if (err) {
return err;
}
// either update the references or inline the whole file
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_dir_commit(lfs, &cwd, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_CTZ, file->id,
2*sizeof(uint32_t)), .u.buffer=&file->head},
file->attrs});
if (err) {
return err;
}
} else {
int err = lfs_dir_commit(lfs, &cwd, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_REG | LFS_STRUCT_INLINE, file->id,
file->size), .u.buffer=file->cache.buffer},
file->attrs});
if (err) {
return err;
}
}
file->flags &= ~LFS_F_DIRTY;
}
return 0;
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_WRONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_WRITING) {
// flush out any writes
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if (file->pos >= file->size) {
// eof if past end
return 0;
}
size = lfs_min(size, file->size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_READING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_READING;
}
// read as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
int err = lfs_cache_read(lfs, &file->cache, NULL,
file->block, file->off, data, diff);
if (err) {
return err;
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_READING) {
// drop any reads
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if ((file->flags & LFS_O_APPEND) && file->pos < file->size) {
file->pos = file->size;
}
if (!(file->flags & LFS_F_WRITING) && file->pos > file->size) {
// fill with zeros
lfs_off_t pos = file->pos;
file->pos = file->size;
while (file->pos < pos) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
if ((file->flags & LFS_F_INLINE) &&
file->pos + nsize >= lfs->cfg->inline_size) {
// inline file doesn't fit anymore
file->block = 0xfffffffe;
file->off = file->pos;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_WRITING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
file->cache.block = 0xffffffff;
}
// extend file with new blocks
lfs_alloc_ack(lfs);
int err = lfs_ctz_extend(lfs, &lfs->rcache, &file->cache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_WRITING;
}
// program as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
while (true) {
int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache,
file->block, file->off, data, diff);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
break;
relocate:
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs_alloc_ack(lfs);
}
file->flags &= ~LFS_F_ERRED;
return size;
}
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence) {
// write out everything beforehand, may be noop if rdonly
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// update pos
if (whence == LFS_SEEK_SET) {
file->pos = off;
} else if (whence == LFS_SEEK_CUR) {
if (off < 0 && (lfs_off_t)-off > file->pos) {
return LFS_ERR_INVAL;
}
file->pos = file->pos + off;
} else if (whence == LFS_SEEK_END) {
if (off < 0 && (lfs_off_t)-off > file->size) {
return LFS_ERR_INVAL;
}
file->pos = file->size + off;
}
return file->pos;
}
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
lfs_off_t oldsize = lfs_file_size(lfs, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
size, &file->head, &(lfs_off_t){0});
if (err) {
return err;
}
file->size = size;
file->flags |= LFS_F_DIRTY;
} else if (size > oldsize) {
lfs_off_t pos = file->pos;
// flush+seek if not already at end
if (file->pos != oldsize) {
int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
if (err < 0) {
return err;
}
}
// fill with zeros
while (file->pos < size) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
// restore pos
int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
if (err < 0) {
return err;
}
}
return 0;
}
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
return file->pos;
}
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
if (res < 0) {
return res;
}
return 0;
}
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
if (file->flags & LFS_F_WRITING) {
return lfs_max(file->pos, file->size);
} else {
return file->size;
}
}
//int lfs_file_getattrs(lfs_t *lfs, lfs_file_t *file,
// const struct lfs_attr *attrs, int count) {
// // set to null in case we can't find the attrs (missing file?)
// for (int j = 0; j < count; j++) {
// memset(attrs[j].buffer, 0, attrs[j].size);
// }
//
// // load from disk if we haven't already been deleted
// if (!lfs_pairisnull(file->pair)) {
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, file->pair);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry = {.off = file->pairoff};
// err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4);
// if (err) {
// return err;
// }
// entry.size = lfs_entry_size(&entry);
//
// err = lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count);
// if (err) {
// return err;
// }
// }
//
// // override an attrs we have stored locally
// for (int i = 0; i < file->attrcount; i++) {
// for (int j = 0; j < count; j++) {
// if (attrs[j].type == file->attrs[i].type) {
// if (attrs[j].size < file->attrs[i].size) {
// return LFS_ERR_RANGE;
// }
//
// memset(attrs[j].buffer, 0, attrs[j].size);
// memcpy(attrs[j].buffer,
// file->attrs[i].buffer, file->attrs[i].size);
// }
// }
// }
//
// return 0;
//}
//int lfs_file_setattrs(lfs_t *lfs, lfs_file_t *file,
// const struct lfs_attr *attrs, int count) {
// if ((file->flags & 3) == LFS_O_RDONLY) {
// return LFS_ERR_BADF;
// }
//
// // at least make sure attributes fit
// if (!lfs_pairisnull(file->pair)) {
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, file->pair);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry = {.off = file->pairoff};
// err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4);
// if (err) {
// return err;
// }
// entry.size = lfs_entry_size(&entry);
//
// lfs_ssize_t res = lfs_dir_checkattrs(lfs, &cwd, &entry, attrs, count);
// if (res < 0) {
// return res;
// }
// }
//
// // just tack to the file, will be written at sync time
// file->attrs = attrs;
// file->attrcount = count;
// file->flags |= LFS_F_DIRTY;
//
// return 0;
//}
/// General fs operations ///
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_dir_t cwd;
int16_t id;
int err = lfs_dir_find(lfs, &cwd, &path, &id);
if (err) {
return err;
}
return lfs_dir_getinfo(lfs, &cwd, id, info);
}
//
//int lfs_remove(lfs_t *lfs, const char *path) {
// // deorphan if we haven't yet, needed at most once after poweron
// if (!lfs->deorphaned) {
// int err = lfs_deorphan(lfs);
// if (err) {
// return err;
// }
// }
//
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, &cwd, &entry, &path);
// if (err) {
// return err;
// }
//
// lfs_dir_t dir;
// if ((0xf & entry.d.type) == LFS_TYPE_DIR) {
// // must be empty before removal, checking size
// // without masking top bit checks for any case where
// // dir is not empty
// err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
// if (err) {
// return err;
// } else if (dir.d.size != sizeof(dir.d)+4) {
// return LFS_ERR_NOTEMPTY;
// }
// }
//
// // remove the entry
// err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1);
// if (err) {
// return err;
// }
//
// // if we were a directory, find pred, replace tail
// if ((0xf & entry.d.type) == LFS_TYPE_DIR) {
// int res = lfs_pred(lfs, dir.pair, &cwd);
// if (res < 0) {
// return res;
// }
//
// LFS_ASSERT(res); // must have pred
// cwd.d.tail[0] = dir.d.tail[0];
// cwd.d.tail[1] = dir.d.tail[1];
//
// err = lfs_dir_commit(lfs, &cwd, NULL, 0);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//
//int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// // deorphan if we haven't yet, needed at most once after poweron
// if (!lfs->deorphaned) {
// int err = lfs_deorphan(lfs);
// if (err) {
// return err;
// }
// }
//
// // find old entry
// lfs_dir_t oldcwd;
// int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t oldentry;
// err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath);
// if (err) {
// return err;
// }
//
// // allocate new entry
// lfs_dir_t newcwd;
// err = lfs_dir_fetch(lfs, &newcwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t preventry;
// err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath);
// if (err && (err != LFS_ERR_NOENT || strchr(newpath, '/') != NULL)) {
// return err;
// }
//
// bool prevexists = (err != LFS_ERR_NOENT);
// bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0);
//
// // check that name fits
// lfs_size_t nlen = strlen(newpath);
// if (nlen > lfs->name_size) {
// return LFS_ERR_NAMETOOLONG;
// }
//
// if (oldentry.size - oldentry.d.nlen + nlen > lfs->cfg->block_size) {
// return LFS_ERR_NOSPC;
// }
//
// // must have same type
// if (prevexists && preventry.d.type != oldentry.d.type) {
// return LFS_ERR_ISDIR;
// }
//
// lfs_dir_t dir;
// if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) {
// // must be empty before removal, checking size
// // without masking top bit checks for any case where
// // dir is not empty
// err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir);
// if (err) {
// return err;
// } else if (dir.d.size != sizeof(dir.d)+4) {
// return LFS_ERR_NOTEMPTY;
// }
// }
//
// // mark as moving
// oldentry.d.type |= LFS_STRUCT_MOVED;
// err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, 1, &oldentry.d.type, 1}}, 1);
// oldentry.d.type &= ~LFS_STRUCT_MOVED;
// if (err) {
// return err;
// }
//
// // update pair if newcwd == oldcwd
// if (samepair) {
// newcwd = oldcwd;
// }
//
// // move to new location
// lfs_entry_t newentry = preventry;
// newentry.d = oldentry.d;
// newentry.d.type &= ~LFS_STRUCT_MOVED;
// newentry.d.nlen = nlen;
// newentry.size = prevexists ? preventry.size : 0;
//
// lfs_size_t newsize = oldentry.size - oldentry.d.nlen + newentry.d.nlen;
// err = lfs_dir_set(lfs, &newcwd, &newentry, (struct lfs_region[]){
// {LFS_FROM_REGION, 0, prevexists ? preventry.size : 0,
// &(struct lfs_region_region){
// oldcwd.pair[0], oldentry.off, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, 4, &newentry.d, 4},
// {LFS_FROM_MEM, newsize-nlen, 0, newpath, nlen}}, 2},
// newsize}}, 1);
// if (err) {
// return err;
// }
//
// // update pair if newcwd == oldcwd
// if (samepair) {
// oldcwd = newcwd;
// }
//
// // remove old entry
// err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, oldentry.size, NULL, 0}}, 1);
// if (err) {
// return err;
// }
//
// // if we were a directory, find pred, replace tail
// if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) {
// int res = lfs_pred(lfs, dir.pair, &newcwd);
// if (res < 0) {
// return res;
// }
//
// LFS_ASSERT(res); // must have pred
// newcwd.d.tail[0] = dir.d.tail[0];
// newcwd.d.tail[1] = dir.d.tail[1];
//
// err = lfs_dir_commit(lfs, &newcwd, NULL, 0);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//int lfs_getattrs(lfs_t *lfs, const char *path,
// const struct lfs_attr *attrs, int count) {
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, &cwd, &entry, &path);
// if (err) {
// return err;
// }
//
// return lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count);
//}
//
//int lfs_setattrs(lfs_t *lfs, const char *path,
// const struct lfs_attr *attrs, int count) {
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, &cwd, &entry, &path);
// if (err) {
// return err;
// }
//
// return lfs_dir_setattrs(lfs, &cwd, &entry, attrs, count);
//}
/// Filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
// setup read cache
lfs->rcache.block = 0xffffffff;
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size);
if (!lfs->rcache.buffer) {
return LFS_ERR_NOMEM;
}
}
// setup program cache
lfs->pcache.block = 0xffffffff;
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size);
if (!lfs->pcache.buffer) {
return LFS_ERR_NOMEM;
}
}
// setup lookahead, round down to nearest 32-bits
LFS_ASSERT(lfs->cfg->lookahead % 32 == 0);
LFS_ASSERT(lfs->cfg->lookahead > 0);
if (lfs->cfg->lookahead_buffer) {
lfs->free.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8);
if (!lfs->free.buffer) {
return LFS_ERR_NOMEM;
}
}
// check that program and read sizes are multiples of the block size
LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
<= lfs->cfg->block_size);
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->inline_size <= LFS_INLINE_MAX);
LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->read_size);
lfs->inline_size = lfs->cfg->inline_size;
if (!lfs->inline_size) {
lfs->inline_size = lfs_min(LFS_INLINE_MAX, lfs->cfg->read_size);
}
LFS_ASSERT(lfs->cfg->attrs_size <= LFS_ATTRS_MAX);
lfs->attrs_size = lfs->cfg->attrs_size;
if (!lfs->attrs_size) {
lfs->attrs_size = LFS_ATTRS_MAX;
}
LFS_ASSERT(lfs->cfg->name_size <= LFS_NAME_MAX);
lfs->name_size = lfs->cfg->name_size;
if (!lfs->name_size) {
lfs->name_size = LFS_NAME_MAX;
}
// setup default state
lfs->root[0] = 0xffffffff;
lfs->root[1] = 0xffffffff;
lfs->files = NULL;
lfs->dirs = NULL;
lfs->deorphaned = false;
return 0;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->read_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
lfs_free(lfs->pcache.buffer);
}
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->free.buffer);
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
lfs->free.off = 0;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count);
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// create superblock dir
lfs_dir_t dir;
err = lfs_dir_alloc(lfs, &dir, false,
(const lfs_block_t[2]){0xffffffff, 0xffffffff});
if (err) {
return err;
}
// write root directory
lfs_dir_t root;
err = lfs_dir_alloc(lfs, &root, false,
(const lfs_block_t[2]){0xffffffff, 0xffffffff});
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &root, NULL);
if (err) {
return err;
}
lfs->root[0] = root.pair[0];
lfs->root[1] = root.pair[1];
dir.tail[0] = lfs->root[0];
dir.tail[1] = lfs->root[1];
// write one superblock
lfs_superblock_t superblock = {
.root[0] = lfs->root[0],
.root[1] = lfs->root[1],
.magic = {"littlefs"},
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.inline_size = lfs->cfg->inline_size,
.attrs_size = lfs->cfg->attrs_size,
.name_size = lfs->cfg->name_size,
};
dir.count += 1;
err = lfs_dir_commit(lfs, &dir, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_SUPERBLOCK | LFS_STRUCT_DIR, 0,
sizeof(superblock)), .u.buffer=&superblock}});
if (err) {
return err;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
return lfs_deinit(lfs);
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// setup free lookahead
lfs->free.off = 0;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// load superblock
lfs_dir_t dir;
err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err) {
if (err == LFS_ERR_CORRUPT) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
}
return err;
}
lfs_superblock_t superblock;
err = lfs_dir_getbuffer(lfs, &dir, 0x7ffff000, &(lfs_entry_t){
lfs_mktag(LFS_TYPE_SUPERBLOCK | LFS_STRUCT_DIR,
0, sizeof(superblock)),
.u.buffer=&superblock});
if (err && err != LFS_ERR_RANGE) {
return err;
}
if (memcmp(superblock.magic, "littlefs", 8) != 0) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
return LFS_ERR_CORRUPT;
}
uint16_t major_version = (0xffff & (superblock.version >> 16));
uint16_t minor_version = (0xffff & (superblock.version >> 0));
if ((major_version != LFS_DISK_VERSION_MAJOR ||
minor_version > LFS_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %d.%d", major_version, minor_version);
return LFS_ERR_INVAL;
}
if (superblock.inline_size) {
if (superblock.inline_size > lfs->inline_size) {
LFS_ERROR("Unsupported inline size (%d > %d)",
superblock.inline_size, lfs->inline_size);
return LFS_ERR_INVAL;
}
lfs->inline_size = superblock.inline_size;
}
if (superblock.attrs_size) {
if (superblock.attrs_size > lfs->attrs_size) {
LFS_ERROR("Unsupported attrs size (%d > %d)",
superblock.attrs_size, lfs->attrs_size);
return LFS_ERR_INVAL;
}
lfs->attrs_size = superblock.attrs_size;
}
if (superblock.name_size) {
if (superblock.name_size > lfs->name_size) {
LFS_ERROR("Unsupported name size (%d > %d)",
superblock.name_size, lfs->name_size);
return LFS_ERR_INVAL;
}
lfs->name_size = superblock.name_size;
}
lfs->root[0] = superblock.root[0];
lfs->root[1] = superblock.root[1];
return 0;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// Internal filesystem filesystem operations ///
int lfs_fs_traverse(lfs_t *lfs,
int (*cb)(lfs_t *lfs, void *data, lfs_block_t block), void *data) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// iterate over metadata pairs
lfs_dir_t dir = {.tail = {0, 1}};
while (!lfs_pairisnull(dir.tail)) {
for (int i = 0; i < 2; i++) {
int err = cb(lfs, data, dir.tail[i]);
if (err) {
return err;
}
}
// iterate through ids in directory
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < dir.count; id++) {
lfs_entry_t entry;
int err = lfs_dir_getentry(lfs, &dir, 0x701ff000,
lfs_mktag(LFS_TYPE_REG, id, 0), &entry);
if (err) {
if (err == LFS_ERR_NOENT) {
continue;
}
return err;
}
if (lfs_tag_struct(entry.tag) == LFS_STRUCT_CTZ) {
err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL,
entry.u.ctz.head, entry.u.ctz.size, cb, data);
if (err) {
return err;
}
}
}
}
// iterate over any open files
for (lfs_file_t *f = lfs->files; f; f = f->next) {
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->head, f->size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
/*
int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// iterate over metadata pairs
lfs_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
lfs_dir_t dir;
int err = lfs_dir_fetch(lfs, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
lfs_entry_t entry;
while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
err = lfs_dir_get(lfs, &dir,
dir.off, &entry.d, sizeof(entry.d));
lfs_entry_fromle32(&entry.d);
if (err) {
return err;
}
dir.off += lfs_entry_size(&entry);
if ((0x70 & entry.d.type) == LFS_STRUCT_CTZ) {
err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL,
entry.d.u.file.head, entry.d.u.file.size, cb, data);
if (err) {
return err;
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (lfs_pairisnull(cwd)) {
break;
}
}
// iterate over any open files
for (lfs_file_t *f = lfs->files; f; f = f->next) {
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->head, f->size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
*/
static int lfs_pred(lfs_t *lfs, const lfs_block_t pair[2], lfs_dir_t *pdir) {
// iterate over all directory directory entries
pdir->tail[0] = 0;
pdir->tail[1] = 1;
while (!lfs_pairisnull(pdir->tail)) {
if (lfs_paircmp(pdir->tail, pair) == 0) {
return true;
}
int err = lfs_dir_fetch(lfs, pdir, pdir->tail);
if (err) {
return err;
}
}
return false;
}
/*
static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// iterate directories
int err = lfs_dir_fetch(lfs, pdir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
while (!lfs_pairisnull(pdir->d.tail)) {
if (lfs_paircmp(pdir->d.tail, dir) == 0) {
return true;
}
err = lfs_dir_fetch(lfs, pdir, pdir->d.tail);
if (err) {
return err;
}
}
return false;
}
*/
static int lfs_parent(lfs_t *lfs, const lfs_block_t pair[2],
lfs_dir_t *parent, lfs_entry_t *entry) {
// iterate over all directory directory entries
parent->tail[0] = 0;
parent->tail[1] = 1;
while (!lfs_pairisnull(parent->tail)) {
int err = lfs_dir_fetch(lfs, parent, parent->tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < parent->count; id++) {
int err = lfs_dir_getentry(lfs, parent, 0x43dff000,
lfs_mktag(LFS_STRUCT_DIR, id, 0), entry);
if (err) {
if (err == LFS_ERR_NOENT) {
continue;
}
return err;
}
if (lfs_paircmp(entry->u.pair, pair) == 0) {
return true;
}
}
}
return false;
}
/*
static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_dir_t *parent, lfs_entry_t *entry) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
parent->d.tail[0] = 0;
parent->d.tail[1] = 1;
// iterate over all directory directory entries
while (!lfs_pairisnull(parent->d.tail)) {
int err = lfs_dir_fetch(lfs, parent, parent->d.tail);
if (err) {
return err;
}
while (true) {
err = lfs_dir_next(lfs, parent, entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (((0x70 & entry->d.type) == LFS_STRUCT_DIR) &&
lfs_paircmp(entry->d.u.dir, dir) == 0) {
return true;
}
}
}
return false;
}
*/
static int lfs_moved(lfs_t *lfs, const lfs_block_t pair[2]) {
// skip superblock
lfs_dir_t dir;
int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
while (!lfs_pairisnull(dir.tail)) {
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
for (int id = 0; id < dir.count; id++) {
lfs_entry_t entry;
int err = lfs_dir_getentry(lfs, &dir, 0x43dff000,
lfs_mktag(LFS_STRUCT_DIR, id, 0), &entry);
if (err) {
if (err == LFS_ERR_NOENT) {
continue;
}
return err;
}
err = lfs_dir_get(lfs, &dir, 0x7ffff000, &(lfs_entry_t){
lfs_mktag(LFS_TYPE_MOVE, id, 0)});
if (err != LFS_ERR_NOENT) {
if (!err) {
continue;
}
return err;
}
if (lfs_paircmp(entry.u.pair, pair) == 0) {
return true;
}
}
}
return false;
}
/*
static int lfs_moved(lfs_t *lfs, const void *e) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// skip superblock
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
lfs_entry_t entry;
while (!lfs_pairisnull(cwd.d.tail)) {
err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
while (true) {
err = lfs_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (!(LFS_STRUCT_MOVED & entry.d.type) &&
memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
return true;
}
}
}
return false;
}
*/
static int lfs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], const lfs_block_t newpair[2]) {
// find parent
lfs_dir_t parent;
lfs_entry_t entry;
int res = lfs_parent(lfs, oldpair, &parent, &entry);
if (res < 0) {
return res;
}
if (res) {
// update disk, this creates a desync
entry.u.pair[0] = newpair[0];
entry.u.pair[1] = newpair[1];
int err = lfs_dir_commit(lfs, &parent, &(lfs_entrylist_t){entry});
if (err) {
return err;
}
// update internal root
if (lfs_paircmp(oldpair, lfs->root) == 0) {
LFS_DEBUG("Relocating root %d %d", newpair[0], newpair[1]);
lfs->root[0] = newpair[0];
lfs->root[1] = newpair[1];
}
// clean up bad block, which should now be a desync
return lfs_deorphan(lfs);
}
// find pred
res = lfs_pred(lfs, oldpair, &parent);
if (res < 0) {
return res;
}
if (res) {
// just replace bad pair, no desync can occur
parent.tail[0] = newpair[0];
parent.tail[1] = newpair[1];
return lfs_dir_commit(lfs, &parent, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_SOFTTAIL + parent.split*0x10, // TODO hm
0x1ff, sizeof(newpair)),
.u.pair[0]=newpair[0], .u.pair[1]=newpair[1]}});
}
// couldn't find dir, must be new
return 0;
}
int lfs_deorphan(lfs_t *lfs) {
lfs->deorphaned = true;
if (lfs_pairisnull(lfs->root)) {
return 0;
}
lfs_dir_t pdir = {.split = true};
lfs_dir_t dir = {.tail = {0, 1}};
// iterate over all directory directory entries
while (!lfs_pairisnull(dir.tail)) {
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!pdir.split) {
// check if we have a parent
lfs_dir_t parent;
lfs_entry_t entry;
int res = lfs_parent(lfs, pdir.tail, &parent, &entry);
if (res < 0) {
return res;
}
if (!res) {
// we are an orphan
LFS_DEBUG("Found orphan %d %d",
pdir.tail[0], pdir.tail[1]);
pdir.tail[0] = dir.tail[0];
pdir.tail[1] = dir.tail[1];
err = lfs_dir_commit(lfs, &pdir, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_SOFTTAIL, 0x1ff,
sizeof(pdir.tail)), .u.buffer=pdir.tail}});
if (err) {
return err;
}
break;
}
if (!lfs_pairsync(entry.u.pair, pdir.tail)) {
// we have desynced
LFS_DEBUG("Found desync %d %d",
entry.u.pair[0], entry.u.pair[1]);
pdir.tail[0] = entry.u.pair[0];
pdir.tail[1] = entry.u.pair[1];
err = lfs_dir_commit(lfs, &pdir, &(lfs_entrylist_t){
{lfs_mktag(LFS_TYPE_SOFTTAIL, 0x1ff,
sizeof(pdir.tail)), .u.buffer=pdir.tail}});
if (err) {
return err;
}
break;
}
}
// check entries for moves
if (dir.moveid >= 0) {
// TODO moves and stuff
// TODO need to load entry to find it
// // found moved entry
// int moved = lfs_moved(lfs, &entry.u);
// if (moved < 0) {
// return moved;
// }
//
// if (moved) {
// LFS_DEBUG("Found move %d %d",
// entry.d.u.dir[0], entry.d.u.dir[1]);
// err = lfs_dir_set(lfs, &dir, &entry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1);
// if (err) {
// return err;
// }
// } else {
// LFS_DEBUG("Found partial move %d %d",
// entry.d.u.dir[0], entry.d.u.dir[1]);
// entry.d.type &= ~LFS_STRUCT_MOVED;
// err = lfs_dir_set(lfs, &dir, &entry, (struct lfs_region[]){
// {LFS_FROM_MEM, 0, 1, &entry.d, 1}}, 1);
// if (err) {
// return err;
// }
// }
}
memcpy(&pdir, &dir, sizeof(pdir));
}
return 0;
}
/*
int lfs_deorphan(lfs_t *lfs) {
lfs->deorphaned = true;
if (lfs_pairisnull(lfs->root)) {
return 0;
}
lfs_dir_t pdir = {.d.size = 0x80000000};
lfs_dir_t cwd = {.d.tail[0] = 0, .d.tail[1] = 1};
// iterate over all directory directory entries
while (!lfs_pairisnull(cwd.d.tail)) {
int err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!(0x80000000 & pdir.d.size)) {
// check if we have a parent
lfs_dir_t parent;
lfs_entry_t entry;
int res = lfs_parent(lfs, pdir.d.tail, &parent, &entry);
if (res < 0) {
return res;
}
if (!res) {
// we are an orphan
LFS_DEBUG("Found orphan %d %d",
pdir.d.tail[0], pdir.d.tail[1]);
pdir.d.tail[0] = cwd.d.tail[0];
pdir.d.tail[1] = cwd.d.tail[1];
err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
break;
}
if (!lfs_pairsync(entry.d.u.dir, pdir.d.tail)) {
// we have desynced
LFS_DEBUG("Found desync %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
pdir.d.tail[0] = entry.d.u.dir[0];
pdir.d.tail[1] = entry.d.u.dir[1];
err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
break;
}
}
// check entries for moves
lfs_entry_t entry;
while (true) {
err = lfs_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
// found moved entry
if (entry.d.type & LFS_STRUCT_MOVED) {
int moved = lfs_moved(lfs, &entry.d.u);
if (moved < 0) {
return moved;
}
if (moved) {
LFS_DEBUG("Found move %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1);
if (err) {
return err;
}
} else {
LFS_DEBUG("Found partial move %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
entry.d.type &= ~LFS_STRUCT_MOVED;
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 1, &entry.d, 1}}, 1);
if (err) {
return err;
}
}
}
}
memcpy(&pdir, &cwd, sizeof(pdir));
}
return 0;
}
*/
/// External filesystem filesystem operations ///
//int lfs_fs_getattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) {
// lfs_dir_t dir;
// int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
// if (err) {
// return err;
// }
//
// lfs_entry_t entry = {.off = sizeof(dir.d)};
// err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4);
// if (err) {
// return err;
// }
// entry.size = lfs_entry_size(&entry);
//
// if (err != LFS_ERR_NOENT) {
// if (!err) {
// break;
// }
// return err;
// }
//
// lfs_dir_t cwd;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
//
// lfs_entry_t entry;
// err = lfs_dir_find(lfs, &cwd, &entry, &path);
// if (err) {
// return err;
// }
//
// return lfs_dir_getinfo(lfs, &cwd, &entry, info);
// return lfs_dir_getattrs(lfs, &dir, &entry, attrs, count);
//}
//
//int lfs_fs_setattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) {
// lfs_dir_t dir;
// int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
// if (err) {
// return err;
// }
//
// lfs_entry_t entry = {.off = sizeof(dir.d)};
// err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4);
// if (err) {
// return err;
// }
// entry.size = lfs_entry_size(&entry);
//
// return lfs_dir_setattrs(lfs, &dir, &entry, attrs, count);
//}
static int lfs_fs_size_count(void *p, lfs_block_t block) {
lfs_size_t *size = p;
*size += 1;
return 0;
}
lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
lfs_size_t size = 0;
int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size);
if (err) {
return err;
}
return size;
}