Files
thirdparty-littlefs/lfs.c
Christopher Haster a43f9b3cd5 Modified lfs_dir_compact to avoid redundant erases during split
The commit machine in littlefs has three stages: commit, compact, and
then split. First we try to append our commit to the metadata log, if
that fails we try to compact the metadata log to remove duplicates and make
room for the commit, if that still fails we split the metadata into two
metadata-pairs and try again. Each stage is less efficient but also less
frequent.

However, in the case that we're filling up a directory with new files,
such as the bootstrap process in setting up a new system, we must pass
through all three stages rather quickly in order to get enough
metadata-pairs to hold all of our files. This means we'll compact,
split, and then need to compact again. This creates more erases than is
needed in the optimal case, which can be a big cost on disks with an
expensive erase operation.

In theory, we can actually avoid this redundant erase by reusing the
data we wrote out in the first attempt to compact. In practice, this
trick is very complicated to pull off.

1. We may need to cache a half-completed program while we write out the
   new metadata-pair. We need to write out the second pair first in
   order to get our new tail before we complete our first metadata-pair.
   This requires two pcaches, which we don't have

   The solution here is to just drop our cache and reconstruct what if
   would have been. This needs to be perfect down to the byte level
   because we don't have knowledge of where our cache lines are.

2. We may have written out entries that are then moved to the new
   metadata-pair.

   The solution here isn't pretty but it works, we just add a delete
   tag for any entry that was moved over.

In the end the solution ends up a bit hacky, with different layers poked
through the commit logic in order to manage writes at the byte level
from where we manage splits. But it works fairly well and saves erases.
2018-10-18 10:00:49 -05:00

3491 lines
100 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs.h"
#include "lfs_util.h"
/// Caching block device operations ///
static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) {
// do not zero, cheaper if cache is readonly or only going to be
// written with identical data (during relocates)
(void)lfs;
rcache->block = 0xffffffff;
}
static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) {
// zero to avoid information leak
memset(pcache->buffer, 0xff, lfs->cfg->prog_size);
pcache->block = 0xffffffff;
}
static int lfs_bd_read(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
if (pcache && block == pcache->block &&
off >= pcache->off &&
off < pcache->off + pcache->size) {
// is already in pcache?
lfs_size_t diff = lfs_min(size, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (block == rcache->block &&
off >= rcache->off &&
off < rcache->off + rcache->size) {
// is already in rcache?
lfs_size_t diff = lfs_min(size, rcache->size - (off-rcache->off));
if (pcache && block == pcache->block) {
diff = lfs_min(diff, pcache->off - off);
}
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (size >= hint && off % lfs->cfg->read_size == 0 &&
size >= lfs->cfg->read_size) {
// bypass cache?
lfs_size_t diff = size - (size % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
LFS_ASSERT(block < lfs->cfg->block_count);
rcache->block = block;
rcache->off = lfs_aligndown(off, lfs->cfg->prog_size);
rcache->size = lfs_min(lfs_min(
lfs_alignup(off+hint, lfs->cfg->prog_size),
lfs->cfg->block_size) - rcache->off, lfs->cfg->cache_size);
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, rcache->size);
if (err) {
return err;
}
}
return 0;
}
static int lfs_bd_cmp(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t dat;
int err = lfs_bd_read(lfs,
pcache, rcache, hint-i,
block, off+i, &dat, 1);
if (err) {
return err;
}
if (dat != data[i]) {
return false;
}
}
return true;
}
static int lfs_bd_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
if (pcache->block != 0xffffffff && pcache->block != 0xfffffffe) {
LFS_ASSERT(pcache->block < lfs->cfg->block_count);
lfs_size_t diff = lfs_alignup(pcache->size, lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, diff);
if (err) {
return err;
}
if (validate) {
// check data on disk
lfs_cache_drop(lfs, rcache);
int res = lfs_bd_cmp(lfs,
NULL, rcache, diff,
pcache->block, pcache->off, pcache->buffer, diff);
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_CORRUPT;
}
}
lfs_cache_zero(lfs, pcache);
}
return 0;
}
static int lfs_bd_sync(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
lfs_cache_drop(lfs, rcache);
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
static int lfs_bd_prog(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block &&
off >= pcache->off &&
off < pcache->off + lfs->cfg->cache_size) {
// already fits in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->cache_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
pcache->size = off - pcache->off;
if (pcache->size == lfs->cfg->cache_size) {
// eagerly flush out pcache if we fill up
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == 0xffffffff);
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = lfs_aligndown(off, lfs->cfg->prog_size);
pcache->size = 0;
}
return 0;
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->cfg->block_count);
return lfs->cfg->erase(lfs->cfg, block);
}
/// Internal operations predeclared here ///
static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *pdir);
static int32_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *parent);
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]);
static int lfs_fs_deorphan(lfs_t *lfs);
static int lfs_fs_demove(lfs_t *lfs);
static int lfs_fs_forceconsistency(lfs_t *lfs);
static int lfs_deinit(lfs_t *lfs);
/// Block allocator ///
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = (lfs_t*)p;
lfs_block_t off = ((block - lfs->free.off)
+ lfs->cfg->block_count) % lfs->cfg->block_count;
if (off < lfs->free.size) {
lfs->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
while (lfs->free.i != lfs->free.size) {
lfs_block_t off = lfs->free.i;
lfs->free.i += 1;
lfs->free.ack -= 1;
if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs->free.off + off) % lfs->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs->free.i != lfs->free.size &&
(lfs->free.buffer[lfs->free.i / 32]
& (1U << (lfs->free.i % 32)))) {
lfs->free.i += 1;
lfs->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs->free.ack == 0) {
LFS_WARN("No more free space %"PRIu32,
lfs->free.i + lfs->free.off);
return LFS_ERR_NOSPC;
}
lfs->free.off = (lfs->free.off + lfs->free.size)
% lfs->cfg->block_count;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack);
lfs->free.i = 0;
// find mask of free blocks from tree
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, lfs);
if (err) {
return err;
}
}
}
static void lfs_alloc_ack(lfs_t *lfs) {
lfs->free.ack = lfs->cfg->block_count;
}
/// Metadata pair and directory operations ///
static inline void lfs_pair_swap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) {
return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
}
static inline int lfs_pair_cmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pair_sync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
static inline void lfs_pair_fromle32(lfs_block_t pair[2]) {
pair[0] = lfs_fromle32(pair[0]);
pair[1] = lfs_fromle32(pair[1]);
}
static inline void lfs_pair_tole32(lfs_block_t pair[2]) {
pair[0] = lfs_tole32(pair[0]);
pair[1] = lfs_tole32(pair[1]);
}
static void lfs_ctz_fromle32(struct lfs_ctz *ctz) {
ctz->head = lfs_fromle32(ctz->head);
ctz->size = lfs_fromle32(ctz->size);
}
static void lfs_ctz_tole32(struct lfs_ctz *ctz) {
ctz->head = lfs_tole32(ctz->head);
ctz->size = lfs_tole32(ctz->size);
}
static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) {
superblock->version = lfs_fromle32(superblock->version);
superblock->block_size = lfs_fromle32(superblock->block_size);
superblock->block_count = lfs_fromle32(superblock->block_count);
superblock->inline_max = lfs_fromle32(superblock->inline_max);
superblock->attr_max = lfs_fromle32(superblock->attr_max);
superblock->name_max = lfs_fromle32(superblock->name_max);
}
static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) {
superblock->version = lfs_tole32(superblock->version);
superblock->block_size = lfs_tole32(superblock->block_size);
superblock->block_count = lfs_tole32(superblock->block_count);
superblock->inline_max = lfs_tole32(superblock->inline_max);
superblock->attr_max = lfs_tole32(superblock->attr_max);
superblock->name_max = lfs_tole32(superblock->name_max);
}
/// Entry tag operations ///
#define LFS_MKTAG(type, id, size) \
(((uint32_t)(type) << 22) | ((uint32_t)(id) << 12) | (uint32_t)(size))
#define LFS_MKATTR(type, id, buffer, size, next) \
&(const lfs_mattr_t){LFS_MKTAG(type, id, size), (buffer), (next)}
static inline bool lfs_tag_isvalid(uint32_t tag) {
return !(tag & 0x80000000);
}
static inline bool lfs_tag_isuser(uint32_t tag) {
return (tag & 0x40000000);
}
static inline uint16_t lfs_tag_type(uint32_t tag) {
return (tag & 0x7fc00000) >> 22;
}
static inline uint16_t lfs_tag_subtype(uint32_t tag) {
return (tag & 0x7c000000) >> 22;
}
static inline uint16_t lfs_tag_id(uint32_t tag) {
return (tag & 0x003ff000) >> 12;
}
static inline lfs_size_t lfs_tag_size(uint32_t tag) {
return tag & 0x00000fff;
}
// operations on set of globals
static inline void lfs_global_xor(lfs_global_t *a, const lfs_global_t *b) {
for (int i = 0; i < sizeof(lfs_global_t)/4; i++) {
a->u32[i] ^= b->u32[i];
}
}
static inline bool lfs_global_iszero(const lfs_global_t *a) {
for (int i = 0; i < sizeof(lfs_global_t)/4; i++) {
if (a->u32[i] != 0) {
return false;
}
}
return true;
}
static inline void lfs_global_zero(lfs_global_t *a) {
memset(a, 0, sizeof(lfs_global_t));
}
static inline void lfs_global_fromle32(lfs_global_t *a) {
lfs_pair_fromle32(a->l.movepair);
a->l.moveid = lfs_fromle16(a->l.moveid);
}
static inline void lfs_global_tole32(lfs_global_t *a) {
lfs_pair_tole32(a->l.movepair);
a->l.moveid = lfs_tole16(a->l.moveid);
}
static inline void lfs_global_move(lfs_t *lfs,
const lfs_block_t pair[2], uint16_t id) {
lfs_global_t diff;
lfs_global_zero(&diff);
diff.l.movepair[0] ^= lfs->globals.g.movepair[0] ^ pair[0];
diff.l.movepair[1] ^= lfs->globals.g.movepair[1] ^ pair[1];
diff.l.moveid ^= lfs->globals.g.moveid ^ id;
lfs_global_fromle32(&lfs->locals);
lfs_global_xor(&lfs->locals, &diff);
lfs_global_tole32(&lfs->locals);
lfs_global_xor(&lfs->globals, &diff);
}
static inline void lfs_global_orphans(lfs_t *lfs, int8_t orphans) {
lfs->locals.l.deorphaned ^= (lfs->globals.g.orphans == 0);
lfs->locals.l.deorphaned ^= (lfs->globals.g.orphans + orphans == 0);
lfs->globals.g.orphans += orphans;
}
// commit logic
struct lfs_commit {
lfs_block_t block;
lfs_off_t off;
uint32_t ptag;
uint32_t crc;
lfs_off_t begin;
lfs_off_t end;
lfs_off_t ack;
};
struct lfs_diskoff {
lfs_block_t block;
lfs_off_t off;
};
static int32_t lfs_commit_get(lfs_t *lfs, lfs_block_t block, lfs_off_t off,
uint32_t tag, uint32_t getmask, uint32_t gettag, int32_t getdiff,
void *buffer, bool stopatcommit) {
// iterate over dir block backwards (for faster lookups)
while (off >= 2*sizeof(tag)+lfs_tag_size(tag)) {
off -= sizeof(tag)+lfs_tag_size(tag);
if (lfs_tag_type(tag) == LFS_TYPE_CRC && stopatcommit) {
break;
} else if (lfs_tag_type(tag) == LFS_TYPE_DELETE) {
if (lfs_tag_id(tag) <= lfs_tag_id(gettag + getdiff)) {
getdiff += LFS_MKTAG(0, 1, 0);
}
} else if ((tag & getmask) == ((gettag + getdiff) & getmask)) {
if (buffer) {
lfs_size_t diff = lfs_min(
lfs_tag_size(gettag), lfs_tag_size(tag));
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, diff,
block, off+sizeof(tag), buffer, diff);
if (err) {
return err;
}
memset((uint8_t*)buffer + diff, 0,
lfs_tag_size(gettag) - diff);
}
return tag - getdiff;
}
uint32_t ntag;
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, sizeof(ntag),
block, off, &ntag, sizeof(ntag));
if (err) {
return err;
}
tag ^= lfs_fromle32(ntag);
}
return LFS_ERR_NOENT;
}
static int lfs_commit_prog(lfs_t *lfs, struct lfs_commit *commit,
const void *buffer, lfs_size_t size) {
lfs_off_t skip = lfs_min(lfs_max(commit->ack, commit->off)
- commit->off, size);
int err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off + skip,
(const uint8_t*)buffer + skip, size - skip);
if (err) {
return err;
}
commit->crc = lfs_crc(commit->crc, buffer, size);
commit->off += size;
commit->ack = lfs_max(commit->off, commit->ack);
return 0;
}
static int lfs_commit_attrs(lfs_t *lfs, struct lfs_commit *commit,
uint16_t id, const struct lfs_attr *attrs);
static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit,
uint32_t frommask, uint32_t fromtag, uint32_t tomask, uint32_t totag,
const lfs_mdir_t *dir, const lfs_mattr_t *attrs);
static int lfs_commit_attr(lfs_t *lfs, struct lfs_commit *commit,
uint32_t tag, const void *buffer) {
if (lfs_tag_subtype(tag) == LFS_FROM_MOVE) {
// special case for moves
return lfs_commit_move(lfs, commit,
0x003ff000, LFS_MKTAG(0, lfs_tag_size(tag), 0),
0x003ff000, LFS_MKTAG(0, lfs_tag_id(tag), 0),
buffer, NULL);
} else if (lfs_tag_subtype(tag) == LFS_FROM_ATTRS) {
// special case for custom attributes
return lfs_commit_attrs(lfs, commit,
lfs_tag_id(tag), buffer);
}
// check if we fit
lfs_size_t size = lfs_tag_size(tag);
if (commit->off + sizeof(tag)+size > commit->end) {
return LFS_ERR_NOSPC;
}
// write out tag
uint32_t ntag = lfs_tole32((tag & 0x7fffffff) ^ commit->ptag);
int err = lfs_commit_prog(lfs, commit, &ntag, sizeof(ntag));
if (err) {
return err;
}
if (!(tag & 0x80000000)) {
// from memory
err = lfs_commit_prog(lfs, commit, buffer, size);
if (err) {
return err;
}
} else {
// from disk
const struct lfs_diskoff *disk = buffer;
for (lfs_off_t i = 0; i < size; i++) {
// rely on caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, size-i,
disk->block, disk->off+i, &dat, 1);
if (err) {
return err;
}
err = lfs_commit_prog(lfs, commit, &dat, 1);
if (err) {
return err;
}
}
}
commit->ptag = tag & 0x7fffffff;
return 0;
}
static int lfs_commit_attrs(lfs_t *lfs, struct lfs_commit *commit,
uint16_t id, const struct lfs_attr *attrs) {
for (const struct lfs_attr *a = attrs; a; a = a->next) {
int err = lfs_commit_attr(lfs, commit,
LFS_MKTAG(0x100 | a->type, id, a->size), a->buffer);
if (err) {
return err;
}
}
return 0;
}
static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit,
uint32_t frommask, uint32_t fromtag, uint32_t tomask, uint32_t totag,
const lfs_mdir_t *dir, const lfs_mattr_t *attrs) {
// iterate through list and commits, only committing unique entries
lfs_off_t off = dir->off;
uint32_t ntag = dir->etag;
while (attrs || off > sizeof(uint32_t)) {
struct lfs_diskoff disk;
uint32_t tag;
const void *buffer;
if (attrs) {
tag = attrs->tag;
buffer = attrs->buffer;
attrs = attrs->next;
} else {
LFS_ASSERT(off > sizeof(ntag)+lfs_tag_size(ntag));
off -= sizeof(ntag)+lfs_tag_size(ntag);
tag = ntag;
buffer = &disk;
disk.block = dir->pair[0];
disk.off = off + sizeof(tag);
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, sizeof(ntag),
dir->pair[0], off, &ntag, sizeof(ntag));
if (err) {
return err;
}
ntag = lfs_fromle32(ntag);
ntag ^= tag;
tag |= 0x80000000;
}
if (lfs_tag_type(tag) == LFS_TYPE_DELETE &&
lfs_tag_id(tag) <= lfs_tag_id(fromtag)) {
// something was deleted, we need to move around it
fromtag += LFS_MKTAG(0, 1, 0);
} else if ((tag & frommask) == (fromtag & frommask)) {
// check if type has already been committed
int32_t res = lfs_commit_get(lfs, commit->block,
commit->off, commit->ptag,
lfs_tag_isuser(tag) ? 0x7ffff000 : 0x7c3ff000,
(tag & ~tomask) | totag,
0, NULL, true);
if (res < 0 && res != LFS_ERR_NOENT) {
return res;
}
if (res == LFS_ERR_NOENT) {
// update id and commit, as we are currently unique
int err = lfs_commit_attr(lfs, commit,
(tag & ~tomask) | totag,
buffer);
if (err) {
return err;
}
}
}
}
return 0;
}
static int lfs_commit_globals(lfs_t *lfs, struct lfs_commit *commit,
lfs_global_t *locals) {
if (lfs_global_iszero(&lfs->locals)) {
return 0;
}
lfs_global_xor(locals, &lfs->locals);
int err = lfs_commit_attr(lfs, commit,
LFS_MKTAG(LFS_TYPE_GLOBALS + locals->l.deorphaned, 0x3ff, 10),
locals);
lfs_global_xor(locals, &lfs->locals);
return err;
}
static int lfs_commit_crc(lfs_t *lfs, struct lfs_commit *commit) {
// align to program units
lfs_off_t off = lfs_alignup(commit->off + 2*sizeof(uint32_t),
lfs->cfg->prog_size);
// read erased state from next program unit
uint32_t tag = 0;
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, sizeof(tag),
commit->block, off, &tag, sizeof(tag));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// build crc tag
tag = lfs_fromle32(tag);
tag = (0x80000000 & ~tag) |
LFS_MKTAG(LFS_TYPE_CRC, 0x3ff,
off - (commit->off+sizeof(uint32_t)));
// write out crc
uint32_t footer[2];
footer[0] = lfs_tole32(tag ^ commit->ptag);
commit->crc = lfs_crc(commit->crc, &footer[0], sizeof(footer[0]));
footer[1] = lfs_tole32(commit->crc);
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off, &footer, sizeof(footer));
if (err) {
return err;
}
commit->off += sizeof(tag)+lfs_tag_size(tag);
commit->ptag = tag;
// flush buffers
err = lfs_bd_sync(lfs, &lfs->pcache, &lfs->rcache, false);
if (err) {
return err;
}
// successful commit, check checksum to make sure
uint32_t crc = 0xffffffff;
lfs_size_t size = commit->off - lfs_tag_size(tag) - commit->begin;
for (lfs_off_t i = 0; i < size; i++) {
// leave it up to caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, size-i,
commit->block, commit->begin+i, &dat, 1);
if (err) {
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
if (err) {
return err;
}
if (crc != commit->crc) {
return LFS_ERR_CORRUPT;
}
return 0;
}
// internal dir operations
static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir) {
// allocate pair of dir blocks (backwards, so we write block 1 first)
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]);
if (err) {
return err;
}
}
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, sizeof(dir->rev),
dir->pair[0], 0, &dir->rev, sizeof(dir->rev));
if (err) {
return err;
}
dir->rev = lfs_fromle32(dir->rev);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// set defaults
dir->off = sizeof(dir->rev);
dir->etag = 0;
dir->count = 0;
dir->tail[0] = 0xffffffff;
dir->tail[1] = 0xffffffff;
dir->erased = false;
dir->split = false;
lfs_global_zero(&dir->locals);
// don't write out yet, let caller take care of that
return 0;
}
static int32_t lfs_dir_fetchmatch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2],
uint32_t findmask, uint32_t findtag, const void *findbuffer) {
dir->pair[0] = pair[0];
dir->pair[1] = pair[1];
int32_t foundtag = LFS_ERR_NOENT;
// find the block with the most recent revision
uint32_t rev[2];
for (int i = 0; i < 2; i++) {
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, sizeof(rev[i]),
dir->pair[i], 0, &rev[i], sizeof(rev[i]));
rev[i] = lfs_fromle32(rev[i]);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err == LFS_ERR_CORRUPT) {
rev[i] = rev[(i+1)%2] - 1;
}
}
if (lfs_scmp(rev[1], rev[0]) > 0) {
lfs_pair_swap(dir->pair);
lfs_pair_swap(rev);
}
// load blocks and check crc
for (int i = 0; i < 2; i++) {
lfs_off_t off = sizeof(dir->rev);
uint32_t ptag = 0;
uint32_t crc = 0xffffffff;
dir->rev = lfs_tole32(rev[0]);
crc = lfs_crc(crc, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
dir->off = 0;
uint32_t tempfoundtag = foundtag;
uint16_t tempcount = 0;
lfs_block_t temptail[2] = {0xffffffff, 0xffffffff};
bool tempsplit = false;
lfs_global_t templocals;
lfs_global_zero(&templocals);
while (true) {
// extract next tag
uint32_t tag;
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
if (err == LFS_ERR_CORRUPT) {
// can't continue?
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &tag, sizeof(tag));
tag = lfs_fromle32(tag) ^ ptag;
// next commit not yet programmed
if (lfs_tag_type(ptag) == LFS_TYPE_CRC && !lfs_tag_isvalid(tag)) {
dir->erased = true;
break;
}
// check we're in valid range
if (off + sizeof(tag)+lfs_tag_size(tag) > lfs->cfg->block_size) {
dir->erased = false;
break;
}
if (lfs_tag_type(tag) == LFS_TYPE_CRC) {
// check the crc attr
uint32_t dcrc;
err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc));
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
dcrc = lfs_fromle32(dcrc);
if (crc != dcrc) {
dir->erased = false;
break;
}
foundtag = tempfoundtag;
dir->off = off + sizeof(tag)+lfs_tag_size(tag);
dir->etag = tag;
dir->count = tempcount;
dir->tail[0] = temptail[0];
dir->tail[1] = temptail[1];
dir->split = tempsplit;
dir->locals = templocals;
lfs->seed ^= crc;
crc = 0xffffffff;
} else {
// crc the entry first, leaving it in the cache
for (lfs_off_t j = 0; j < lfs_tag_size(tag); j++) {
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag)+j, &dat, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
// keep track of id count
if (lfs_tag_id(tag) < 0x3ff && lfs_tag_id(tag) >= tempcount) {
tempcount = lfs_tag_id(tag)+1;
}
// check for special tags
if (lfs_tag_subtype(tag) == LFS_TYPE_TAIL) {
tempsplit = (lfs_tag_type(tag) & 1);
err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag),
&temptail, sizeof(temptail));
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
}
lfs_pair_fromle32(temptail);
} else if (lfs_tag_subtype(tag) == LFS_TYPE_GLOBALS) {
templocals.l.deorphaned = (lfs_tag_type(tag) & 1);
err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag),
&templocals, 10);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
}
} else if (lfs_tag_subtype(tag) == LFS_TYPE_DELETE) {
LFS_ASSERT(tempcount > 0);
tempcount -= 1;
if (lfs_tag_id(tag) == lfs_tag_id(tempfoundtag)) {
tempfoundtag = LFS_ERR_NOENT;
} else if (lfs_tag_isvalid(tempfoundtag) &&
lfs_tag_id(tag) < lfs_tag_id(tempfoundtag)) {
tempfoundtag -= LFS_MKTAG(0, 1, 0);
}
} else if ((tag & findmask) == (findtag & findmask)) {
// found a match?
if (lfs_tag_type(findtag) == LFS_TYPE_DIRSTRUCT) {
lfs_block_t child[2];
err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache,
lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag),
&child, sizeof(child));
if (err < 0) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
lfs_pair_fromle32(child);
if (lfs_pair_cmp(child,
(const lfs_block_t *)findbuffer) == 0) {
tempfoundtag = tag;
}
} else if (lfs_tag_type(findtag) == LFS_TYPE_NAME) {
int res = lfs_bd_cmp(lfs,
NULL, &lfs->rcache, lfs_tag_size(findtag),
dir->pair[0], off+sizeof(tag),
findbuffer, lfs_tag_size(findtag));
if (res < 0) {
if (res == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return res;
}
if (res) {
tempfoundtag = tag;
}
} else {
tempfoundtag = tag;
}
}
}
ptag = tag;
off += sizeof(tag)+lfs_tag_size(tag);
}
// consider what we have good enough
if (dir->off > 0) {
// synthetic move
if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0) {
if (lfs->globals.g.moveid == lfs_tag_id(foundtag)) {
foundtag = LFS_ERR_NOENT;
} else if (lfs_tag_isvalid(foundtag) &&
lfs->globals.g.moveid < lfs_tag_id(foundtag)) {
foundtag -= LFS_MKTAG(0, 1, 0);
}
}
return foundtag;
}
// failed, try the other crc?
lfs_pair_swap(dir->pair);
lfs_pair_swap(rev);
}
LFS_ERROR("Corrupted dir pair at %"PRIu32" %"PRIu32,
dir->pair[0], dir->pair[1]);
return LFS_ERR_CORRUPT;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2]) {
int32_t res = lfs_dir_fetchmatch(lfs, dir, pair,
0xffffffff, 0xffffffff, NULL);
if (res < 0 && res != LFS_ERR_NOENT) {
return res;
}
return 0;
}
static int32_t lfs_dir_find(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2], bool fs,
uint32_t findmask, uint32_t findtag, const void *findbuffer) {
dir->split = true;
dir->tail[0] = pair[0];
dir->tail[1] = pair[1];
while ((dir->split || fs) && !lfs_pair_isnull(dir->tail)) {
int32_t tag = lfs_dir_fetchmatch(lfs, dir, dir->tail,
findmask, findtag, findbuffer);
if (tag != LFS_ERR_NOENT) {
return tag;
}
}
return LFS_ERR_NOENT;
}
static int32_t lfs_dir_get(lfs_t *lfs, lfs_mdir_t *dir,
uint32_t getmask, uint32_t gettag, void *buffer) {
int32_t getdiff = 0;
if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0 &&
lfs_tag_id(gettag) <= lfs->globals.g.moveid) {
// synthetic moves
getdiff = LFS_MKTAG(0, 1, 0);
}
return lfs_commit_get(lfs, dir->pair[0], dir->off, dir->etag,
getmask, gettag, getdiff, buffer, false);
}
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_mattr_t *attrs,
lfs_mdir_t *source, uint16_t begin, uint16_t end) {
// save some state in case block is bad
const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
bool relocated = false;
// There's nothing special about our global delta, so feed it back
// into the global global delta
lfs_global_xor(&lfs->locals, &dir->locals);
lfs_global_zero(&dir->locals);
while (true) {
// setup compaction
bool splitted = false;
bool exhausted = false;
struct lfs_commit commit;
commit.block = dir->pair[1];
commit.ack = 0;
commit:
// setup erase state
exhausted = false;
dir->count = end - begin;
int16_t ackid = -1;
// setup commit state
commit.off = 0;
commit.crc = 0xffffffff;
commit.ptag = 0;
// space is complicated, we need room for tail, crc, globals,
// cleanup delete, and we cap at half a block to give room
// for metadata updates
commit.begin = 0;
commit.end = lfs_min(
lfs_alignup(lfs->cfg->block_size/2, lfs->cfg->prog_size),
lfs->cfg->block_size - 38);
if (!splitted) {
// increment revision count
dir->rev += 1;
if (lfs->cfg->block_cycles &&
dir->rev % lfs->cfg->block_cycles == 0) {
if (lfs_pair_cmp(dir->pair,
(const lfs_block_t[2]){0, 1}) == 0) {
// we're writing too much to the superblock,
// should we expand?
lfs_ssize_t res = lfs_fs_size(lfs);
if (res < 0) {
return res;
}
// do we have enough space to expand?
if (res < lfs->cfg->block_count/2) {
LFS_DEBUG("Expanding superblock at rev %"PRIu32,
dir->rev);
exhausted = true;
goto split;
}
} else {
// we're writing too much, time to relocate
exhausted = true;
goto relocate;
}
}
// erase block to write to
int err = lfs_bd_erase(lfs, dir->pair[1]);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// write out header
uint32_t rev = lfs_tole32(dir->rev);
int err = lfs_commit_prog(lfs, &commit, &rev, sizeof(rev));
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit with a move
for (uint16_t id = begin; id < end || commit.off < commit.ack; id++) {
err = lfs_commit_move(lfs, &commit,
0x003ff000, LFS_MKTAG(0, id, 0),
0x003ff000, LFS_MKTAG(0, id - begin, 0),
source, attrs);
if (err && !(splitted && err == LFS_ERR_NOSPC)) {
if (err == LFS_ERR_NOSPC) {
goto split;
} else if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
ackid = id;
}
// reopen reserved space at the end
commit.end = lfs->cfg->block_size - 8;
if (ackid >= end) {
// extra garbage attributes were written out during split,
// need to clean up
err = lfs_commit_attr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_DELETE, ackid, 0), NULL);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) {
// move over (duplicate) superblock if we are root
err = lfs_commit_move(lfs, &commit,
0x7c000000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 0),
0x7ffff000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 0),
source, attrs);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
if (!relocated) {
// commit any globals, unless we're relocating,
// in which case our parent will steal our globals
err = lfs_commit_globals(lfs, &commit, &dir->locals);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
if (!lfs_pair_isnull(dir->tail)) {
// commit tail, which may be new after last size check
lfs_pair_tole32(dir->tail);
err = lfs_commit_attr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_TAIL + dir->split,
0x3ff, sizeof(dir->tail)), dir->tail);
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
err = lfs_commit_crc(lfs, &commit);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful compaction, swap dir pair to indicate most recent
lfs_pair_swap(dir->pair);
dir->off = commit.off;
dir->etag = commit.ptag;
dir->erased = true;
break;
split:
// commit no longer fits, need to split dir,
// drop caches and create tail
splitted = !exhausted;
if (lfs->pcache.block != 0xffffffff) {
commit.ack -= lfs->pcache.size;
lfs_cache_drop(lfs, &lfs->pcache);
}
if (!exhausted && ackid < 0) {
// If we can't fit in this block, we won't fit in next block
return LFS_ERR_NOSPC;
}
lfs_mdir_t tail;
err = lfs_dir_alloc(lfs, &tail);
if (err) {
return err;
}
tail.split = dir->split;
tail.tail[0] = dir->tail[0];
tail.tail[1] = dir->tail[1];
err = lfs_dir_compact(lfs, &tail, attrs, source, ackid+1, end);
if (err) {
return err;
}
end = ackid+1;
dir->tail[0] = tail.pair[0];
dir->tail[1] = tail.pair[1];
dir->split = true;
if (exhausted) {
lfs->root[0] = tail.pair[0];
lfs->root[1] = tail.pair[1];
}
goto commit;
relocate:
// commit was corrupted, drop caches and prepare to relocate block
relocated = true;
lfs_cache_drop(lfs, &lfs->pcache);
if (!exhausted) {
LFS_DEBUG("Bad block at %"PRIu32, dir->pair[1]);
}
// can't relocate superblock, filesystem is now frozen
if (lfs_pair_cmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
LFS_WARN("Superblock %"PRIu32" has become unwritable", oldpair[1]);
return LFS_ERR_NOSPC;
}
// relocate half of pair
err = lfs_alloc(lfs, &dir->pair[1]);
if (err && (err != LFS_ERR_NOSPC && !exhausted)) {
return err;
}
continue;
}
if (!relocated) {
// successful commit, update globals
lfs_global_xor(&dir->locals, &lfs->locals);
lfs_global_zero(&lfs->locals);
} else {
// update references if we relocated
LFS_DEBUG("Relocating %"PRIu32" %"PRIu32" to %"PRIu32" %"PRIu32,
oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
int err = lfs_fs_relocate(lfs, oldpair, dir->pair);
if (err) {
return err;
}
}
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const lfs_mattr_t *attrs) {
lfs_mattr_t cancelattr;
lfs_global_t canceldiff;
lfs_global_zero(&canceldiff);
if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0) {
// Wait, we have the move? Just cancel this out here
// We need to, or else the move can become outdated
canceldiff.l.movepair[0] ^= lfs->globals.g.movepair[0] ^ 0xffffffff;
canceldiff.l.movepair[1] ^= lfs->globals.g.movepair[1] ^ 0xffffffff;
canceldiff.l.moveid ^= lfs->globals.g.moveid ^ 0x3ff;
lfs_global_fromle32(&lfs->locals);
lfs_global_xor(&lfs->locals, &canceldiff);
lfs_global_tole32(&lfs->locals);
cancelattr.tag = LFS_MKTAG(LFS_TYPE_DELETE, lfs->globals.l.moveid, 0);
cancelattr.next = attrs;
attrs = &cancelattr;
}
// calculate new directory size
uint32_t deletetag = 0xffffffff;
for (const lfs_mattr_t *a = attrs; a; a = a->next) {
if (lfs_tag_id(a->tag) < 0x3ff && lfs_tag_id(a->tag) >= dir->count) {
dir->count = lfs_tag_id(a->tag)+1;
}
if (lfs_tag_type(a->tag) == LFS_TYPE_DELETE) {
LFS_ASSERT(dir->count > 0);
dir->count -= 1;
deletetag = a->tag;
if (dir->count == 0) {
// should we actually drop the directory block?
lfs_mdir_t pdir;
int err = lfs_fs_pred(lfs, dir->pair, &pdir);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT && pdir.split) {
// steal tail and global state
pdir.split = dir->split;
pdir.tail[0] = dir->tail[0];
pdir.tail[1] = dir->tail[1];
lfs_global_xor(&lfs->locals, &dir->locals);
return lfs_dir_commit(lfs, &pdir,
LFS_MKATTR(LFS_TYPE_TAIL + pdir.split, 0x3ff,
pdir.tail, sizeof(pdir.tail),
NULL));
}
}
}
}
while (true) {
if (!dir->erased) {
goto compact;
}
// try to commit
struct lfs_commit commit = {
.block = dir->pair[0],
.off = dir->off,
.crc = 0xffffffff,
.ptag = dir->etag,
.begin = dir->off,
.end = lfs->cfg->block_size - 8,
.ack = 0,
};
for (const lfs_mattr_t *a = attrs; a; a = a->next) {
if (lfs_tag_type(a->tag) != LFS_TYPE_DELETE) {
lfs_pair_tole32(dir->tail);
int err = lfs_commit_attr(lfs, &commit, a->tag, a->buffer);
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
}
}
if (lfs_tag_isvalid(deletetag)) {
// special case for deletes, since order matters
int err = lfs_commit_attr(lfs, &commit, deletetag, NULL);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
}
int err = lfs_commit_globals(lfs, &commit, &dir->locals);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
err = lfs_commit_crc(lfs, &commit);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
// successful commit, update dir
dir->off = commit.off;
dir->etag = commit.ptag;
// successful commit, update globals
lfs_global_xor(&dir->locals, &lfs->locals);
lfs_global_zero(&lfs->locals);
break;
compact:
// fall back to compaction
lfs_cache_drop(lfs, &lfs->pcache);
err = lfs_dir_compact(lfs, dir, attrs, dir, 0, dir->count);
if (err) {
return err;
}
break;
}
// update globals that are affected
lfs_global_xor(&lfs->globals, &canceldiff);
// update any directories that are affected
lfs_mdir_t copy = *dir;
// two passes, once for things that aren't us, and one
// for things that are
for (lfs_mlist_t *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(d->m.pair, copy.pair) == 0) {
d->m = *dir;
if (d->id == lfs_tag_id(deletetag)) {
d->m.pair[0] = 0xffffffff;
d->m.pair[1] = 0xffffffff;
} else if (d->id > lfs_tag_id(deletetag)) {
d->id -= 1;
if (d->type == LFS_TYPE_DIR) {
((lfs_dir_t*)d)->pos -= 1;
}
}
while (d->id >= d->m.count && d->m.split) {
// we split and id is on tail now
d->id -= d->m.count;
int err = lfs_dir_fetch(lfs, &d->m, d->m.tail);
if (err) {
return err;
}
}
}
}
return 0;
}
static int32_t lfs_dir_lookup(lfs_t *lfs, lfs_mdir_t *dir, const char **path) {
// we reduce path to a single name if we can find it
const char *name = *path;
*path = NULL;
// default to root dir
int32_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0);
lfs_block_t pair[2] = {lfs->root[0], lfs->root[1]};
while (true) {
nextname:
// skip slashes
name += strspn(name, "/");
lfs_size_t namelen = strcspn(name, "/");
// skip '.' and root '..'
if ((namelen == 1 && memcmp(name, ".", 1) == 0) ||
(namelen == 2 && memcmp(name, "..", 2) == 0)) {
name += namelen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = name + namelen;
lfs_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
name = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// found path
if (name[0] == '\0') {
return tag;
}
// update what we've found if path is only a name
if (strchr(name, '/') == NULL) {
*path = name;
}
// only continue if we hit a directory
if (lfs_tag_type(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
// grab the entry data
if (lfs_tag_id(tag) != 0x3ff) {
int32_t res = lfs_dir_get(lfs, dir, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
}
// find entry matching name
tag = lfs_dir_find(lfs, dir, pair, false, 0x7c000fff,
LFS_MKTAG(LFS_TYPE_NAME, 0, namelen), name);
if (tag < 0) {
return tag;
}
// to next name
name += namelen;
}
}
static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir,
uint16_t id, struct lfs_info *info) {
if (id == 0x3ff) {
// special case for root
strcpy(info->name, "/");
info->type = LFS_TYPE_DIR;
return 0;
}
int32_t tag = lfs_dir_get(lfs, dir, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_max+1), info->name);
if (tag < 0) {
return tag;
}
info->type = lfs_tag_type(tag);
struct lfs_ctz ctz;
tag = lfs_dir_get(lfs, dir, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type(tag) == LFS_TYPE_CTZSTRUCT) {
info->size = ctz.size;
} else if (lfs_tag_type(tag) == LFS_TYPE_INLINESTRUCT) {
info->size = lfs_tag_size(tag);
}
return 0;
}
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
int32_t res = lfs_dir_lookup(lfs, &cwd, &path);
if (!(res == LFS_ERR_NOENT && path)) {
return (res < 0) ? res : LFS_ERR_EXIST;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
// build up new directory
lfs_alloc_ack(lfs);
lfs_mdir_t dir;
err = lfs_dir_alloc(lfs, &dir);
if (err) {
return err;
}
dir.tail[0] = cwd.tail[0];
dir.tail[1] = cwd.tail[1];
err = lfs_dir_commit(lfs, &dir, NULL);
if (err) {
return err;
}
// get next slot and commit
uint16_t id = cwd.count;
cwd.tail[0] = dir.pair[0];
cwd.tail[1] = dir.pair[1];
lfs_pair_tole32(dir.pair);
err = lfs_dir_commit(lfs, &cwd,
LFS_MKATTR(LFS_TYPE_DIR, id, path, nlen,
LFS_MKATTR(LFS_TYPE_DIRSTRUCT, id, dir.pair, sizeof(dir.pair),
LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, cwd.tail, sizeof(cwd.tail),
NULL))));
lfs_pair_fromle32(dir.pair);
if (err) {
return err;
}
return 0;
}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
int32_t tag = lfs_dir_lookup(lfs, &dir->m, &path);
if (tag < 0) {
return tag;
}
if (lfs_tag_type(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
lfs_block_t pair[2];
if (lfs_tag_id(tag) == 0x3ff) {
// handle root dir separately
pair[0] = lfs->root[0];
pair[1] = lfs->root[1];
} else {
// get dir pair from parent
int32_t res = lfs_dir_get(lfs, &dir->m, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
}
// fetch first pair
int err = lfs_dir_fetch(lfs, &dir->m, pair);
if (err) {
return err;
}
// setup entry
dir->head[0] = dir->m.pair[0];
dir->head[1] = dir->m.pair[1];
dir->id = 0;
dir->pos = 0;
// add to list of mdirs
dir->type = LFS_TYPE_DIR;
dir->next = (lfs_dir_t*)lfs->mlist;
lfs->mlist = (lfs_mlist_t*)dir;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// remove from list of mdirs
for (lfs_mlist_t **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (lfs_mlist_t*)dir) {
*p = (*p)->next;
break;
}
}
return 0;
}
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == 0) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return 1;
} else if (dir->pos == 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return 1;
}
while (true) {
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return false;
}
int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
dir->id = 0;
}
int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info);
if (err && err != LFS_ERR_NOENT) {
return err;
}
dir->id += 1;
if (err != LFS_ERR_NOENT) {
break;
}
}
dir->pos += 1;
return true;
}
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// simply walk from head dir
int err = lfs_dir_rewind(lfs, dir);
if (err) {
return err;
}
// first two for ./..
dir->pos = lfs_min(2, off);
off -= dir->pos;
while (off != 0) {
dir->id = lfs_min(dir->m.count, off);
dir->pos += dir->id;
off -= dir->id;
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return LFS_ERR_INVAL;
}
err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
}
}
return 0;
}
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
(void)lfs;
return dir->pos;
}
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// reload the head dir
int err = lfs_dir_fetch(lfs, &dir->m, dir->head);
if (err) {
return err;
}
dir->m.pair[0] = dir->head[0];
dir->m.pair[1] = dir->head[1];
dir->id = 0;
dir->pos = 0;
return 0;
}
/// File index list operations ///
static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
lfs_off_t size = *off;
lfs_off_t b = lfs->cfg->block_size - 2*4;
lfs_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs_popc(i);
return i;
}
static int lfs_ctz_find(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
if (size == 0) {
*block = 0xffffffff;
*off = 0;
return 0;
}
lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
lfs_off_t target = lfs_ctz_index(lfs, &pos);
while (current > target) {
lfs_size_t skip = lfs_min(
lfs_npw2(current-target+1) - 1,
lfs_ctz(current));
int err = lfs_bd_read(lfs,
pcache, rcache, sizeof(head),
head, 4*skip, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
static int lfs_ctz_extend(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_block_t *block, lfs_off_t *off) {
while (true) {
// go ahead and grab a block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
size -= 1;
lfs_off_t index = lfs_ctz_index(lfs, &size);
size += 1;
// just copy out the last block if it is incomplete
if (size != lfs->cfg->block_size) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t data;
err = lfs_bd_read(lfs,
NULL, rcache, size-i,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs_bd_prog(lfs,
pcache, rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = size;
return 0;
}
// append block
index += 1;
lfs_size_t skips = lfs_ctz(index) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
head = lfs_tole32(head);
err = lfs_bd_prog(lfs, pcache, rcache, true,
nblock, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs_bd_read(lfs,
NULL, rcache, sizeof(head),
head, 4*i, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
}
*block = nblock;
*off = 4*skips;
return 0;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, pcache);
}
}
static int lfs_ctz_traverse(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
int (*cb)(void*, lfs_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
while (true) {
int err = cb(data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs_block_t heads[2];
int count = 2 - (index & 1);
err = lfs_bd_read(lfs,
pcache, rcache, count*sizeof(head),
head, 0, &heads, count*sizeof(head));
heads[0] = lfs_fromle32(heads[0]);
heads[1] = lfs_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags,
const struct lfs_file_config *cfg) {
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & 3) != LFS_O_RDONLY) {
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
}
// setup simple file details
int err = 0;
file->cfg = cfg;
file->flags = flags;
file->pos = 0;
file->cache.buffer = NULL;
// allocate entry for file if it doesn't exist
int32_t tag = lfs_dir_lookup(lfs, &file->m, &path);
if (tag < 0 && !(tag == LFS_ERR_NOENT && path)) {
err = tag;
goto cleanup;
}
// get id, add to list of mdirs to catch update changes
file->id = lfs_tag_id(tag);
file->type = LFS_TYPE_REG;
file->next = (lfs_file_t*)lfs->mlist;
lfs->mlist = (lfs_mlist_t*)file;
if (tag == LFS_ERR_NOENT) {
if (!(flags & LFS_O_CREAT)) {
err = LFS_ERR_NOENT;
goto cleanup;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
// get next slot and create entry to remember name
file->id = file->m.count;
err = lfs_dir_commit(lfs, &file->m,
LFS_MKATTR(LFS_TYPE_REG, file->id, path, nlen,
LFS_MKATTR(LFS_TYPE_INLINESTRUCT, file->id, NULL, 0,
NULL)));
if (err) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, 0);
} else if (flags & LFS_O_EXCL) {
err = LFS_ERR_EXIST;
goto cleanup;
} else if (lfs_tag_type(tag) != LFS_TYPE_REG) {
err = LFS_ERR_ISDIR;
goto cleanup;
} else if (flags & LFS_O_TRUNC) {
// truncate if requested
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0);
file->flags |= LFS_F_DIRTY;
} else {
// try to load what's on disk, if it's inlined we'll fix it later
tag = lfs_dir_get(lfs, &file->m, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, file->id, 8), &file->ctz);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs_ctz_fromle32(&file->ctz);
}
// fetch attrs
for (const struct lfs_attr *a = file->cfg->attrs; a; a = a->next) {
if ((file->flags & 3) != LFS_O_WRONLY) {
int32_t res = lfs_dir_get(lfs, &file->m, 0x7ffff000,
LFS_MKTAG(0x100 | a->type, file->id, a->size), a->buffer);
if (res < 0 && res != LFS_ERR_NOENT) {
err = res;
goto cleanup;
}
}
if ((file->flags & 3) != LFS_O_RDONLY) {
if (a->size > lfs->attr_max) {
err = LFS_ERR_NOSPC;
goto cleanup;
}
file->flags |= LFS_F_DIRTY;
}
}
// allocate buffer if needed
if (file->cfg->buffer) {
file->cache.buffer = file->cfg->buffer;
} else {
file->cache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!file->cache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leak
lfs_cache_zero(lfs, &file->cache);
if (lfs_tag_type(tag) == LFS_TYPE_INLINESTRUCT) {
// load inline files
file->ctz.head = 0xfffffffe;
file->ctz.size = lfs_tag_size(tag);
file->flags |= LFS_F_INLINE;
file->cache.block = file->ctz.head;
file->cache.off = 0;
file->cache.size = lfs->cfg->cache_size;
// don't always read (may be new/trunc file)
if (file->ctz.size > 0) {
int32_t res = lfs_dir_get(lfs, &file->m, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, file->id, file->ctz.size),
file->cache.buffer);
if (res < 0) {
err = res;
goto cleanup;
}
}
}
return 0;
cleanup:
// clean up lingering resources
file->flags |= LFS_F_ERRED;
lfs_file_close(lfs, file);
return err;
}
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
static const struct lfs_file_config defaults = {0};
return lfs_file_opencfg(lfs, file, path, flags, &defaults);
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_sync(lfs, file);
// remove from list of mdirs
for (lfs_mlist_t **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (lfs_mlist_t*)file) {
*p = (*p)->next;
break;
}
}
// clean up memory
if (!file->cfg->buffer) {
lfs_free(file->cache.buffer);
}
return err;
}
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
while (true) {
// just relocate what exists into new block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs_off_t i = 0; i < file->off; i++) {
uint8_t data;
err = lfs_bd_read(lfs,
&file->cache, &lfs->rcache, file->off-i,
file->block, i, &data, 1);
if (err) {
return err;
}
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->cache_size);
file->cache.block = lfs->pcache.block;
file->cache.off = lfs->pcache.off;
file->cache.size = lfs->pcache.size;
lfs_cache_zero(lfs, &lfs->pcache);
file->block = nblock;
return 0;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, &lfs->pcache);
}
}
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
if (file->flags & LFS_F_READING) {
file->flags &= ~LFS_F_READING;
}
if (file->flags & LFS_F_WRITING) {
lfs_off_t pos = file->pos;
if (!(file->flags & LFS_F_INLINE)) {
// copy over anything after current branch
lfs_file_t orig = {
.ctz.head = file->ctz.head,
.ctz.size = file->ctz.size,
.flags = LFS_O_RDONLY,
.pos = file->pos,
.cache = lfs->rcache,
};
lfs_cache_drop(lfs, &lfs->rcache);
while (file->pos < file->ctz.size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs_file_write(lfs, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs->rcache.block != 0xffffffff) {
lfs_cache_drop(lfs, &orig.cache);
lfs_cache_drop(lfs, &lfs->rcache);
}
}
// write out what we have
while (true) {
int err = lfs_bd_flush(lfs,
&file->cache, &lfs->rcache, true);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, file->block);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
}
} else {
file->ctz.size = lfs_max(file->pos, file->ctz.size);
}
// actual file updates
file->ctz.head = file->block;
file->ctz.size = file->pos;
file->flags &= ~LFS_F_WRITING;
file->flags |= LFS_F_DIRTY;
file->pos = pos;
}
return 0;
}
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
while (true) {
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
if ((file->flags & LFS_F_DIRTY) &&
!(file->flags & LFS_F_ERRED) &&
!lfs_pair_isnull(file->m.pair)) {
// update dir entry
uint16_t type;
const void *buffer;
lfs_size_t size;
struct lfs_ctz ctz;
if (file->flags & LFS_F_INLINE) {
// inline the whole file
type = LFS_TYPE_INLINESTRUCT;
buffer = file->cache.buffer;
size = file->ctz.size;
} else {
// update the ctz reference
type = LFS_TYPE_CTZSTRUCT;
// copy ctz so alloc will work during a relocate
ctz = file->ctz;
lfs_ctz_tole32(&ctz);
buffer = &ctz;
size = sizeof(ctz);
}
// commit file data and attributes
err = lfs_dir_commit(lfs, &file->m,
LFS_MKATTR(type, file->id, buffer, size,
LFS_MKATTR(LFS_FROM_ATTRS, file->id, file->cfg->attrs, 0,
NULL)));
if (err) {
if (err == LFS_ERR_NOSPC && (file->flags & LFS_F_INLINE)) {
goto relocate;
}
return err;
}
file->flags &= ~LFS_F_DIRTY;
}
return 0;
relocate:
// inline file doesn't fit anymore
file->block = 0xfffffffe;
file->off = file->pos;
lfs_alloc_ack(lfs);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
}
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_WRONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_WRITING) {
// flush out any writes
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if (file->pos >= file->ctz.size) {
// eof if past end
return 0;
}
size = lfs_min(size, file->ctz.size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_READING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_READING;
}
// read as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
int err = lfs_bd_read(lfs,
NULL, &file->cache, lfs->cfg->block_size,
file->block, file->off, data, diff);
if (err) {
return err;
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_READING) {
// drop any reads
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) {
file->pos = file->ctz.size;
}
if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) {
// fill with zeros
lfs_off_t pos = file->pos;
file->pos = file->ctz.size;
while (file->pos < pos) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
if ((file->flags & LFS_F_INLINE) &&
file->pos + nsize > lfs->inline_max) {
// inline file doesn't fit anymore
file->block = 0xfffffffe;
file->off = file->pos;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_WRITING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
lfs_cache_zero(lfs, &file->cache);
}
// extend file with new blocks
lfs_alloc_ack(lfs);
int err = lfs_ctz_extend(lfs, &file->cache, &lfs->rcache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_WRITING;
}
// program as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
while (true) {
int err = lfs_bd_prog(lfs, &file->cache, &lfs->rcache, true,
file->block, file->off, data, diff);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
break;
relocate:
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs_alloc_ack(lfs);
}
file->flags &= ~LFS_F_ERRED;
return size;
}
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence) {
// write out everything beforehand, may be noop if rdonly
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// update pos
if (whence == LFS_SEEK_SET) {
file->pos = off;
} else if (whence == LFS_SEEK_CUR) {
if (off < 0 && (lfs_off_t)-off > file->pos) {
return LFS_ERR_INVAL;
}
file->pos = file->pos + off;
} else if (whence == LFS_SEEK_END) {
if (off < 0 && (lfs_off_t)-off > file->ctz.size) {
return LFS_ERR_INVAL;
}
file->pos = file->ctz.size + off;
}
return file->pos;
}
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
lfs_off_t oldsize = lfs_file_size(lfs, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
size, &file->ctz.head, &(lfs_off_t){0});
if (err) {
return err;
}
file->ctz.size = size;
file->flags |= LFS_F_DIRTY;
} else if (size > oldsize) {
lfs_off_t pos = file->pos;
// flush+seek if not already at end
if (file->pos != oldsize) {
int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
if (err < 0) {
return err;
}
}
// fill with zeros
while (file->pos < size) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
// restore pos
int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
if (err < 0) {
return err;
}
}
return 0;
}
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
return file->pos;
}
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
if (res < 0) {
return res;
}
return 0;
}
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
if (file->flags & LFS_F_WRITING) {
return lfs_max(file->pos, file->ctz.size);
} else {
return file->ctz.size;
}
}
/// General fs operations ///
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_mdir_t cwd;
int32_t tag = lfs_dir_lookup(lfs, &cwd, &path);
if (tag < 0) {
return tag;
}
return lfs_dir_getinfo(lfs, &cwd, lfs_tag_id(tag), info);
}
int lfs_remove(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
int32_t tag = lfs_dir_lookup(lfs, &cwd, &path);
if (tag < 0) {
return tag;
}
lfs_mdir_t dir;
if (lfs_tag_type(tag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t pair[2];
int32_t res = lfs_dir_get(lfs, &cwd, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
err = lfs_dir_fetch(lfs, &dir, pair);
if (err) {
return err;
}
if (dir.count > 0 || dir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_global_orphans(lfs, +1);
}
// delete the entry
err = lfs_dir_commit(lfs, &cwd,
LFS_MKATTR(LFS_TYPE_DELETE, lfs_tag_id(tag), NULL, 0,
NULL));
if (err) {
return err;
}
if (lfs_tag_type(tag) == LFS_TYPE_DIR) {
// fix orphan
lfs_global_orphans(lfs, -1);
err = lfs_fs_pred(lfs, dir.pair, &cwd);
if (err) {
return err;
}
// steal state
cwd.tail[0] = dir.tail[0];
cwd.tail[1] = dir.tail[1];
lfs_global_xor(&lfs->locals, &dir.locals);
err = lfs_dir_commit(lfs, &cwd,
LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff,
cwd.tail, sizeof(cwd.tail),
NULL));
if (err) {
return err;
}
}
return 0;
}
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
// find old entry
lfs_mdir_t oldcwd;
int32_t oldtag = lfs_dir_lookup(lfs, &oldcwd, &oldpath);
if (oldtag < 0) {
return oldtag;
}
// find new entry
lfs_mdir_t newcwd;
int32_t prevtag = lfs_dir_lookup(lfs, &newcwd, &newpath);
if (prevtag < 0 && prevtag != LFS_ERR_NOENT) {
return prevtag;
}
uint16_t newid = lfs_tag_id(prevtag);
lfs_mdir_t prevdir;
if (prevtag == LFS_ERR_NOENT) {
// check that name fits
lfs_size_t nlen = strlen(newpath);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
// get next id
newid = newcwd.count;
} else if (lfs_tag_type(prevtag) != lfs_tag_type(oldtag)) {
return LFS_ERR_ISDIR;
} else if (lfs_tag_type(prevtag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t prevpair[2];
int32_t res = lfs_dir_get(lfs, &newcwd, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(prevpair);
// must be empty before removal
err = lfs_dir_fetch(lfs, &prevdir, prevpair);
if (err) {
return err;
}
if (prevdir.count > 0 || prevdir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_global_orphans(lfs, +1);
}
// create move to fix later
lfs_global_move(lfs, oldcwd.pair, lfs_tag_id(oldtag));
// move over all attributes
err = lfs_dir_commit(lfs, &newcwd,
LFS_MKATTR(lfs_tag_type(oldtag), newid, newpath, strlen(newpath),
LFS_MKATTR(LFS_FROM_MOVE, newid, &oldcwd, lfs_tag_id(oldtag),
NULL)));
if (err) {
return err;
}
// let commit clean up after move (if we're different! otherwise move
// logic already fixed it for us)
if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) != 0) {
err = lfs_dir_commit(lfs, &oldcwd, NULL);
if (err) {
return err;
}
}
if (prevtag != LFS_ERR_NOENT && lfs_tag_type(prevtag) == LFS_TYPE_DIR) {
// fix orphan
lfs_global_orphans(lfs, -1);
err = lfs_fs_pred(lfs, prevdir.pair, &newcwd);
if (err) {
return err;
}
// steal state
newcwd.tail[0] = prevdir.tail[0];
newcwd.tail[1] = prevdir.tail[1];
lfs_global_xor(&lfs->locals, &prevdir.locals);
err = lfs_dir_commit(lfs, &newcwd,
LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff,
newcwd.tail, sizeof(newcwd.tail),
NULL));
if (err) {
return err;
}
}
return 0;
}
lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
uint8_t type, void *buffer, lfs_size_t size) {
lfs_mdir_t cwd;
int32_t res = lfs_dir_lookup(lfs, &cwd, &path);
if (res < 0) {
return res;
}
uint16_t id = lfs_tag_id(res);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
res = lfs_dir_get(lfs, &cwd, 0x7ffff000,
LFS_MKTAG(0x100 | type, id, lfs_min(size, lfs->attr_max)),
buffer);
if (res < 0 && res != LFS_ERR_NOENT) {
return res;
}
return (res == LFS_ERR_NOENT) ? 0 : lfs_tag_size(res);
}
int lfs_setattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size) {
if (size > lfs->attr_max) {
return LFS_ERR_NOSPC;
}
lfs_mdir_t cwd;
int32_t res = lfs_dir_lookup(lfs, &cwd, &path);
if (res < 0) {
return res;
}
uint16_t id = lfs_tag_id(res);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
return lfs_dir_commit(lfs, &cwd,
LFS_MKATTR(0x100 | type, id, buffer, size,
NULL));
}
/// Filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
int err = 0;
// check that block size is a multiple of cache size is a multiple
// of prog and read sizes
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->prog_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->cache_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
<= lfs->cfg->block_size);
// setup read cache
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->rcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// setup program cache
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->pcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leaks
lfs_cache_zero(lfs, &lfs->rcache);
lfs_cache_zero(lfs, &lfs->pcache);
// setup lookahead, must be multiple of 32-bits
LFS_ASSERT(lfs->cfg->lookahead % 32 == 0);
LFS_ASSERT(lfs->cfg->lookahead > 0);
if (lfs->cfg->lookahead_buffer) {
lfs->free.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8);
if (!lfs->free.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->inline_max <= LFS_INLINE_MAX);
LFS_ASSERT(lfs->cfg->inline_max <= lfs->cfg->cache_size);
lfs->inline_max = lfs->cfg->inline_max;
if (!lfs->inline_max) {
lfs->inline_max = lfs_min(LFS_INLINE_MAX, lfs->cfg->cache_size);
}
LFS_ASSERT(lfs->cfg->attr_max <= LFS_ATTR_MAX);
lfs->attr_max = lfs->cfg->attr_max;
if (!lfs->attr_max) {
lfs->attr_max = LFS_ATTR_MAX;
}
LFS_ASSERT(lfs->cfg->name_max <= LFS_NAME_MAX);
lfs->name_max = lfs->cfg->name_max;
if (!lfs->name_max) {
lfs->name_max = LFS_NAME_MAX;
}
// setup default state
lfs->root[0] = 0xffffffff;
lfs->root[1] = 0xffffffff;
lfs->mlist = NULL;
lfs->seed = 0;
lfs->globals.g.movepair[0] = 0xffffffff;
lfs->globals.g.movepair[1] = 0xffffffff;
lfs->globals.g.moveid = 0x3ff;
lfs->globals.g.orphans = 0;
lfs_global_zero(&lfs->locals);
return 0;
cleanup:
lfs_deinit(lfs);
return err;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->read_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
lfs_free(lfs->pcache.buffer);
}
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->free.buffer);
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
lfs->free.off = 0;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count);
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// create root dir
lfs_mdir_t root;
err = lfs_dir_alloc(lfs, &root);
if (err) {
goto cleanup;
}
// write one superblock
lfs_superblock_t superblock = {
.magic = {"littlefs"},
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.attr_max = lfs->attr_max,
.name_max = lfs->name_max,
.inline_max = lfs->inline_max,
};
lfs_superblock_tole32(&superblock);
err = lfs_dir_commit(lfs, &root,
LFS_MKATTR(LFS_TYPE_ROOT, 0, &superblock, sizeof(superblock),
NULL));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &root, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
cleanup:
lfs_deinit(lfs);
return err;
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// find root/superblock
lfs_mdir_t root;
lfs_superblock_t superblock;
int32_t tag = lfs_dir_find(lfs,
&root, (const lfs_block_t[2]){0, 1}, false, 0x7fc00000,
LFS_MKTAG(LFS_TYPE_ROOT, 0, 8), "littlefs");
if (tag < 0) {
err = tag;
goto cleanup;
}
int32_t res = lfs_dir_get(lfs, &root, 0x7c000000,
LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, sizeof(superblock)),
&superblock);
if (res < 0) {
err = res;
goto cleanup;
}
lfs_superblock_fromle32(&superblock);
lfs->root[0] = root.pair[0];
lfs->root[1] = root.pair[1];
// check version
uint16_t major_version = (0xffff & (superblock.version >> 16));
uint16_t minor_version = (0xffff & (superblock.version >> 0));
if ((major_version != LFS_DISK_VERSION_MAJOR ||
minor_version > LFS_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %"PRIu32".%"PRIu32,
major_version, minor_version);
err = LFS_ERR_INVAL;
goto cleanup;
}
// check superblock configuration
if (superblock.attr_max) {
if (superblock.attr_max > lfs->attr_max) {
LFS_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")",
superblock.attr_max, lfs->attr_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->attr_max = superblock.attr_max;
}
if (superblock.name_max) {
if (superblock.name_max > lfs->name_max) {
LFS_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")",
superblock.name_max, lfs->name_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->name_max = superblock.name_max;
}
if (superblock.inline_max) {
if (superblock.inline_max > lfs->inline_max) {
LFS_ERROR("Unsupported inline_max (%"PRIu32" > %"PRIu32")",
superblock.inline_max, lfs->inline_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->inline_max = superblock.inline_max;
}
// scan for any global updates
lfs_mdir_t dir = {.tail = {0, 1}};
while (!lfs_pair_isnull(dir.tail)) {
err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
err = LFS_ERR_INVAL;
goto cleanup;
}
// xor together indirect deletes
lfs_global_xor(&lfs->locals, &dir.locals);
}
// update littlefs with globals
lfs_global_fromle32(&lfs->locals);
lfs_global_xor(&lfs->globals, &lfs->locals);
lfs_global_zero(&lfs->locals);
if (!lfs_pair_isnull(lfs->globals.g.movepair)) {
LFS_DEBUG("Found move %"PRIu32" %"PRIu32" %"PRIu32,
lfs->globals.g.movepair[0],
lfs->globals.g.movepair[1],
lfs->globals.g.moveid);
}
// setup free lookahead
lfs->free.off = lfs->seed % lfs->cfg->block_size;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
return 0;
cleanup:
lfs_unmount(lfs);
return err;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// Filesystem filesystem operations ///
int lfs_fs_traverse(lfs_t *lfs,
int (*cb)(void *data, lfs_block_t block), void *data) {
if (lfs_pair_isnull(lfs->root)) {
return 0;
}
// iterate over metadata pairs
lfs_mdir_t dir = {.tail = {0, 1}};
while (!lfs_pair_isnull(dir.tail)) {
for (int i = 0; i < 2; i++) {
int err = cb(data, dir.tail[i]);
if (err) {
return err;
}
}
// iterate through ids in directory
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < dir.count; id++) {
struct lfs_ctz ctz;
int32_t tag = lfs_dir_get(lfs, &dir, 0x7c3ff000,
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
if (tag == LFS_ERR_NOENT) {
continue;
}
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type(tag) == LFS_TYPE_CTZSTRUCT) {
err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
ctz.head, ctz.size, cb, data);
if (err) {
return err;
}
}
}
}
// iterate over any open files
for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
if (f->type != LFS_TYPE_REG) {
continue;
}
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->ctz.head, f->ctz.size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
static int lfs_fs_pred(lfs_t *lfs,
const lfs_block_t pair[2], lfs_mdir_t *pdir) {
if (lfs_pair_isnull(lfs->root)) {
return LFS_ERR_NOENT;
}
// iterate over all directory directory entries
pdir->tail[0] = 0;
pdir->tail[1] = 1;
while (!lfs_pair_isnull(pdir->tail)) {
if (lfs_pair_cmp(pdir->tail, pair) == 0) {
return 0;
}
int err = lfs_dir_fetch(lfs, pdir, pdir->tail);
if (err) {
return err;
}
}
return LFS_ERR_NOENT;
}
static int32_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t pair[2],
lfs_mdir_t *parent) {
if (lfs_pair_isnull(lfs->root)) {
return LFS_ERR_NOENT;
}
// search for both orderings so we can reuse the find function
for (int i = 0; i < 2; i++) {
int32_t tag = lfs_dir_find(lfs, parent,
(const lfs_block_t[2]){0, 1}, true, 0x7fc00fff,
LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, 8), pair);
if (tag != LFS_ERR_NOENT) {
return tag;
}
}
return LFS_ERR_NOENT;
}
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]) {
// update internal root
if (lfs_pair_cmp(oldpair, lfs->root) == 0) {
LFS_DEBUG("Relocating root %"PRIu32" %"PRIu32,
newpair[0], newpair[1]);
lfs->root[0] = newpair[0];
lfs->root[1] = newpair[1];
}
// update internally tracked dirs
for (lfs_mlist_t *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(oldpair, d->m.pair) == 0) {
d->m.pair[0] = newpair[0];
d->m.pair[1] = newpair[1];
}
}
// find parent
lfs_mdir_t parent;
int32_t tag = lfs_fs_parent(lfs, oldpair, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag != LFS_ERR_NOENT) {
// update disk, this creates a desync
lfs_global_orphans(lfs, +1);
lfs_pair_tole32(newpair);
int err = lfs_dir_commit(lfs, &parent,
&(lfs_mattr_t){.tag=tag, .buffer=newpair});
lfs_pair_fromle32(newpair);
if (err) {
return err;
}
// next step, clean up orphans
lfs_global_orphans(lfs, -1);
}
// find pred
int err = lfs_fs_pred(lfs, oldpair, &parent);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// if we can't find dir, it must be new
if (err != LFS_ERR_NOENT) {
// replace bad pair, either we clean up desync, or no desync occured
parent.tail[0] = newpair[0];
parent.tail[1] = newpair[1];
err = lfs_dir_commit(lfs, &parent,
LFS_MKATTR(LFS_TYPE_TAIL + parent.split, 0x3ff,
parent.tail, sizeof(parent.tail),
NULL));
if (err) {
return err;
}
}
return 0;
}
static int lfs_fs_deorphan(lfs_t *lfs) {
// Fix any orphans
lfs_mdir_t pdir = {.split = true};
lfs_mdir_t dir = {.tail = {0, 1}};
// iterate over all directory directory entries
while (!lfs_pair_isnull(dir.tail)) {
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!pdir.split) {
// check if we have a parent
lfs_mdir_t parent;
int32_t tag = lfs_fs_parent(lfs, pdir.tail, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag == LFS_ERR_NOENT) {
// we are an orphan
LFS_DEBUG("Fixing orphan %"PRIu32" %"PRIu32,
pdir.tail[0], pdir.tail[1]);
pdir.tail[0] = dir.tail[0];
pdir.tail[1] = dir.tail[1];
err = lfs_dir_commit(lfs, &pdir,
LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff,
pdir.tail, sizeof(pdir.tail),
NULL));
if (err) {
return err;
}
break;
}
lfs_block_t pair[2];
int32_t res = lfs_dir_get(lfs, &parent, 0x7ffff000, tag, pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
if (!lfs_pair_sync(pair, pdir.tail)) {
// we have desynced
LFS_DEBUG("Fixing half-orphan %"PRIu32" %"PRIu32,
pair[0], pair[1]);
pdir.tail[0] = pair[0];
pdir.tail[1] = pair[1];
err = lfs_dir_commit(lfs, &pdir,
LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff,
pdir.tail, sizeof(pdir.tail),
NULL));
if (err) {
return err;
}
break;
}
}
memcpy(&pdir, &dir, sizeof(pdir));
}
// mark orphans as fixed
lfs_global_orphans(lfs, -lfs->globals.g.orphans);
return 0;
}
static int lfs_fs_demove(lfs_t *lfs) {
// Fix bad moves
LFS_DEBUG("Fixing move %"PRIu32" %"PRIu32" %"PRIu32,
lfs->globals.g.movepair[0],
lfs->globals.g.movepair[1],
lfs->globals.g.moveid);
// fetch and delete the moved entry
lfs_mdir_t movedir;
int err = lfs_dir_fetch(lfs, &movedir, lfs->globals.g.movepair);
if (err) {
return err;
}
// rely on cancel logic inside commit
err = lfs_dir_commit(lfs, &movedir, NULL);
if (err) {
return err;
}
return 0;
}
static int lfs_fs_forceconsistency(lfs_t *lfs) {
if (lfs->globals.g.orphans) {
int err = lfs_fs_deorphan(lfs);
if (err) {
return err;
}
}
if (lfs->globals.g.moveid != 0x3ff) {
int err = lfs_fs_demove(lfs);
if (err) {
return err;
}
}
return 0;
}
static int lfs_fs_size_count(void *p, lfs_block_t block) {
(void)block;
lfs_size_t *size = p;
*size += 1;
return 0;
}
lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
lfs_size_t size = 0;
int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size);
if (err) {
return err;
}
return size;
}