One of the new features in LittleFS is "inline files", which is the inlining of small files in the parent directory. Inline files have a big limitation in that they no longer have a dedicated scratch area to write out data before commit-time. This is fine as long as inline files are small enough to fit in RAM. However, this dependency on RAM creates an uncomfortable situation for portability, with larger devices able to create larger files than smaller devices. This problem is especially important on embedded systems, where RAM is at a premium. Recently, I realized this RAM requirement is necessary for _writing_ inline files, but not for _reading_ inline files. By allowing fetches of specific slices of inline files it's possible to read inline files without the RAM to back it. However however, this creates a conflict with COW semantics. Normally, when a file is open twice, it is referenced by a COW data structure that can be updated independently. Inlines files that fit in RAM also allows independent updates, but the moment an inline file can't fit in RAM, any updates to that directory block could corrupt open files referencing the inline file. The fact that this behaviour is only inconsistent for inline files created on a different device with more RAM creates a potential nightmare for user experience. Fortunately, there is a workaround for this. When we are commiting to a directory, any open files needs to live in a COW structure or in RAM. While we could move large inline files to COW structures at open time, this would break the separation of read/write operations and could lead to write errors at read time (ie ENOSPC). But since this is only an issue for commits, we can defer the move to a COW structure to any commits to that directory. This means when committing to a directory we need to find any _open_ large inline files and evict them from the directory, leaving the file with a new COW structure even if it was opened read only. While complicated, the end result is inline files that can use the MAX RAM that is available, but can be read with MIN RAM, even with multiple write operations happening to the underlying directory block. This prevents users from needing to learn the idiosyncrasies of inline files to use the filesystem portably.
The little filesystem
A little fail-safe filesystem designed for embedded systems.
   | | |     .---._____
  .-----.   |          |
--|o    |---| littlefs |
--|     |---|          |
  '-----'   '----------'
   | | |
Bounded RAM/ROM - The littlefs is designed to work with a limited amount of memory. Recursion is avoided and dynamic memory is limited to configurable buffers that can be provided statically.
Power-loss resilient - The littlefs is designed for systems that may have random power failures. The littlefs has strong copy-on-write guarantees and storage on disk is always kept in a valid state.
Wear leveling - Since the most common form of embedded storage is erodible flash memories, littlefs provides a form of dynamic wear leveling for systems that can not fit a full flash translation layer.
Example
Here's a simple example that updates a file named boot_count every time
main runs. The program can be interrupted at any time without losing track
of how many times it has been booted and without corrupting the filesystem:
#include "lfs.h"
// variables used by the filesystem
lfs_t lfs;
lfs_file_t file;
// configuration of the filesystem is provided by this struct
const struct lfs_config cfg = {
    // block device operations
    .read  = user_provided_block_device_read,
    .prog  = user_provided_block_device_prog,
    .erase = user_provided_block_device_erase,
    .sync  = user_provided_block_device_sync,
    // block device configuration
    .read_size = 16,
    .prog_size = 16,
    .block_size = 4096,
    .block_count = 128,
    .cache_size = 16,
    .lookahead_size = 16,
};
// entry point
int main(void) {
    // mount the filesystem
    int err = lfs_mount(&lfs, &cfg);
    // reformat if we can't mount the filesystem
    // this should only happen on the first boot
    if (err) {
        lfs_format(&lfs, &cfg);
        lfs_mount(&lfs, &cfg);
    }
    // read current count
    uint32_t boot_count = 0;
    lfs_file_open(&lfs, &file, "boot_count", LFS_O_RDWR | LFS_O_CREAT);
    lfs_file_read(&lfs, &file, &boot_count, sizeof(boot_count));
    // update boot count
    boot_count += 1;
    lfs_file_rewind(&lfs, &file);
    lfs_file_write(&lfs, &file, &boot_count, sizeof(boot_count));
    // remember the storage is not updated until the file is closed successfully
    lfs_file_close(&lfs, &file);
    // release any resources we were using
    lfs_unmount(&lfs);
    // print the boot count
    printf("boot_count: %d\n", boot_count);
}
Usage
Detailed documentation (or at least as much detail as is currently available) can be found in the comments in lfs.h.
As you may have noticed, littlefs takes in a configuration structure that defines how the filesystem operates. The configuration struct provides the filesystem with the block device operations and dimensions, tweakable parameters that tradeoff memory usage for performance, and optional static buffers if the user wants to avoid dynamic memory.
The state of the littlefs is stored in the lfs_t type which is left up
to the user to allocate, allowing multiple filesystems to be in use
simultaneously. With the lfs_t and configuration struct, a user can
format a block device or mount the filesystem.
Once mounted, the littlefs provides a full set of POSIX-like file and directory functions, with the deviation that the allocation of filesystem structures must be provided by the user.
All POSIX operations, such as remove and rename, are atomic, even in event of power-loss. Additionally, no file updates are actually committed to the filesystem until sync or close is called on the file.
Other notes
All littlefs have the potential to return a negative error code. The errors
can be either one of those found in the enum lfs_error in lfs.h,
or an error returned by the user's block device operations.
In the configuration struct, the prog and erase function provided by the
user may return a LFS_ERR_CORRUPT error if the implementation already can
detect corrupt blocks. However, the wear leveling does not depend on the return
code of these functions, instead all data is read back and checked for
integrity.
If your storage caches writes, make sure that the provided sync function
flushes all the data to memory and ensures that the next read fetches the data
from memory, otherwise data integrity can not be guaranteed. If the write
function does not perform caching, and therefore each read or write call
hits the memory, the sync function can simply return 0.
Reference material
DESIGN.md - DESIGN.md contains a fully detailed dive into how littlefs actually works. I would encourage you to read it since the solutions and tradeoffs at work here are quite interesting.
SPEC.md - SPEC.md contains the on-disk specification of littlefs with all the nitty-gritty details. Can be useful for developing tooling.
Testing
The littlefs comes with a test suite designed to run on a PC using the emulated block device found in the emubd directory. The tests assume a Linux environment and can be started with make:
make test
License
The littlefs is provided under the BSD-3-Clause license. See LICENSE.md for more information. Contributions to this project are accepted under the same license.
Individual files contain the following tag instead of the full license text.
SPDX-License-Identifier:    BSD-3-Clause
This enables machine processing of license information based on the SPDX License Identifiers that are here available: http://spdx.org/licenses/
Related projects
Mbed OS - The easiest way to get started with littlefs is to jump into Mbed, which already has block device drivers for most forms of embedded storage. The littlefs is available in Mbed OS as the LittleFileSystem class.
littlefs-fuse - A FUSE wrapper for littlefs. The project allows you to mount littlefs directly on a Linux machine. Can be useful for debugging littlefs if you have an SD card handy.
littlefs-js - A javascript wrapper for littlefs. I'm not sure why you would want this, but it is handy for demos. You can see it in action here.
mklfs - A command line tool built by the Lua RTOS guys for making littlefs images from a host PC. Supports Windows, Mac OS, and Linux.
SPIFFS - Another excellent embedded filesystem for NOR flash. As a more traditional logging filesystem with full static wear-leveling, SPIFFS will likely outperform littlefs on small memories such as the internal flash on microcontrollers.
Dhara - An interesting NAND flash translation layer designed for small MCUs. It offers static wear-leveling and power-resilience with only a fixed O(|address|) pointer structure stored on each block and in RAM.