mirror of
				https://github.com/eledio-devices/thirdparty-miniz.git
				synced 2025-10-31 08:42:39 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1093 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1093 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #include "miniz_tdef.h"
 | |
| #include "miniz.h"
 | |
| // ------------------- Low-level Compression (independent from all decompression API's)
 | |
| 
 | |
| // Purposely making these tables static for faster init and thread safety.
 | |
| static const mz_uint16 s_tdefl_len_sym[256] = {
 | |
|   257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272,
 | |
|   273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276,
 | |
|   277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,
 | |
|   279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
 | |
|   281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,
 | |
|   282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,
 | |
|   283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,
 | |
|   284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 };
 | |
| 
 | |
| static const mz_uint8 s_tdefl_len_extra[256] = {
 | |
|   0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
 | |
|   4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
 | |
|   5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
 | |
|   5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 };
 | |
| 
 | |
| static const mz_uint8 s_tdefl_small_dist_sym[512] = {
 | |
|   0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,
 | |
|   11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,
 | |
|   13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,
 | |
|   14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,
 | |
|   14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,
 | |
|   15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,
 | |
|   16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
 | |
|   16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
 | |
|   16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
 | |
|   17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
 | |
|   17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
 | |
|   17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 };
 | |
| 
 | |
| static const mz_uint8 s_tdefl_small_dist_extra[512] = {
 | |
|   0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,
 | |
|   5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
 | |
|   6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
 | |
|   6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
 | |
|   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
 | |
|   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
 | |
|   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
 | |
|   7,7,7,7,7,7,7,7 };
 | |
| 
 | |
| static const mz_uint8 s_tdefl_large_dist_sym[128] = {
 | |
|   0,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26,
 | |
|   26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,
 | |
|   28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 };
 | |
| 
 | |
| static const mz_uint8 s_tdefl_large_dist_extra[128] = {
 | |
|   0,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
 | |
|   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
 | |
|   13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 };
 | |
| 
 | |
| // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values.
 | |
| typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq;
 | |
| static tdefl_sym_freq* tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1)
 | |
| {
 | |
|   mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ(hist);
 | |
|   for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; }
 | |
|   while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;
 | |
|   for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
 | |
|   {
 | |
|     const mz_uint32* pHist = &hist[pass << 8];
 | |
|     mz_uint offsets[256], cur_ofs = 0;
 | |
|     for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
 | |
|     for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
 | |
|     { tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; }
 | |
|   }
 | |
|   return pCur_syms;
 | |
| }
 | |
| 
 | |
| // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
 | |
| static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n)
 | |
| {
 | |
|   int root, leaf, next, avbl, used, dpth;
 | |
|   if (n==0) return; else if (n==1) { A[0].m_key = 1; return; }
 | |
|   A[0].m_key += A[1].m_key; root = 0; leaf = 2;
 | |
|   for (next=1; next < n-1; next++)
 | |
|   {
 | |
|     if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = (mz_uint16)next; } else A[next].m_key = A[leaf++].m_key;
 | |
|     if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); A[root++].m_key = (mz_uint16)next; } else A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
 | |
|   }
 | |
|   A[n-2].m_key = 0; for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
 | |
|   avbl = 1; used = dpth = 0; root = n-2; next = n-1;
 | |
|   while (avbl>0)
 | |
|   {
 | |
|     while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; }
 | |
|     while (avbl>used) { A[next--].m_key = (mz_uint16)(dpth); avbl--; }
 | |
|     avbl = 2*used; dpth++; used = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Limits canonical Huffman code table's max code size.
 | |
| enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
 | |
| static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
 | |
| {
 | |
|   int i; mz_uint32 total = 0; if (code_list_len <= 1) return;
 | |
|   for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
 | |
|   for (i = max_code_size; i > 0; i--) total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
 | |
|   while (total != (1UL << max_code_size))
 | |
|   {
 | |
|     pNum_codes[max_code_size]--;
 | |
|     for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
 | |
|     total--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table)
 | |
| {
 | |
|   int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ(num_codes);
 | |
|   if (static_table)
 | |
|   {
 | |
|     for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms;
 | |
|     int num_used_syms = 0;
 | |
|     const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
 | |
|     for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; }
 | |
| 
 | |
|     pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);
 | |
| 
 | |
|     for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
 | |
| 
 | |
|     tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit);
 | |
| 
 | |
|     MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
 | |
|     for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
 | |
|       for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
 | |
|   }
 | |
| 
 | |
|   next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1);
 | |
| 
 | |
|   for (i = 0; i < table_len; i++)
 | |
|   {
 | |
|     mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;
 | |
|     code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1);
 | |
|     d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define TDEFL_PUT_BITS(b, l) do { \
 | |
|   mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \
 | |
|   d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \
 | |
|   while (d->m_bits_in >= 8) { \
 | |
|     if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
 | |
|       *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
 | |
|       d->m_bit_buffer >>= 8; \
 | |
|       d->m_bits_in -= 8; \
 | |
|   } \
 | |
| } MZ_MACRO_END
 | |
| 
 | |
| #define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \
 | |
|   if (rle_repeat_count < 3) { \
 | |
|     d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
 | |
|     while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
 | |
|   } else { \
 | |
|     d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \
 | |
| } rle_repeat_count = 0; } }
 | |
| 
 | |
| #define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \
 | |
|   if (rle_z_count < 3) { \
 | |
|     d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
 | |
|   } else if (rle_z_count <= 10) { \
 | |
|     d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \
 | |
|   } else { \
 | |
|     d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \
 | |
| } rle_z_count = 0; } }
 | |
| 
 | |
| static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
 | |
| 
 | |
| static void tdefl_start_dynamic_block(tdefl_compressor *d)
 | |
| {
 | |
|   int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index;
 | |
|   mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF;
 | |
| 
 | |
|   d->m_huff_count[0][256] = 1;
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
 | |
|   tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);
 | |
| 
 | |
|   for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;
 | |
|   for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;
 | |
| 
 | |
|   memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
 | |
|   memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes);
 | |
|   total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0;
 | |
| 
 | |
|   memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
 | |
|   for (i = 0; i < total_code_sizes_to_pack; i++)
 | |
|   {
 | |
|     mz_uint8 code_size = code_sizes_to_pack[i];
 | |
|     if (!code_size)
 | |
|     {
 | |
|       TDEFL_RLE_PREV_CODE_SIZE();
 | |
|       if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       TDEFL_RLE_ZERO_CODE_SIZE();
 | |
|       if (code_size != prev_code_size)
 | |
|       {
 | |
|         TDEFL_RLE_PREV_CODE_SIZE();
 | |
|         d->m_huff_count[2][code_size] = (mz_uint16)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size;
 | |
|       }
 | |
|       else if (++rle_repeat_count == 6)
 | |
|       {
 | |
|         TDEFL_RLE_PREV_CODE_SIZE();
 | |
|       }
 | |
|     }
 | |
|     prev_code_size = code_size;
 | |
|   }
 | |
|   if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); }
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);
 | |
| 
 | |
|   TDEFL_PUT_BITS(2, 2);
 | |
| 
 | |
|   TDEFL_PUT_BITS(num_lit_codes - 257, 5);
 | |
|   TDEFL_PUT_BITS(num_dist_codes - 1, 5);
 | |
| 
 | |
|   for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break;
 | |
|   num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
 | |
|   for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);
 | |
| 
 | |
|   for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; )
 | |
|   {
 | |
|     mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
 | |
|     TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
 | |
|     if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tdefl_start_static_block(tdefl_compressor *d)
 | |
| {
 | |
|   mz_uint i;
 | |
|   mz_uint8 *p = &d->m_huff_code_sizes[0][0];
 | |
| 
 | |
|   for (i = 0; i <= 143; ++i) *p++ = 8;
 | |
|   for ( ; i <= 255; ++i) *p++ = 9;
 | |
|   for ( ; i <= 279; ++i) *p++ = 7;
 | |
|   for ( ; i <= 287; ++i) *p++ = 8;
 | |
| 
 | |
|   memset(d->m_huff_code_sizes[1], 5, 32);
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
 | |
|   tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);
 | |
| 
 | |
|   TDEFL_PUT_BITS(1, 2);
 | |
| }
 | |
| 
 | |
| static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS
 | |
| static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)
 | |
| {
 | |
|   mz_uint flags;
 | |
|   mz_uint8 *pLZ_codes;
 | |
|   mz_uint8 *pOutput_buf = d->m_pOutput_buf;
 | |
|   mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
 | |
|   mz_uint64 bit_buffer = d->m_bit_buffer;
 | |
|   mz_uint bits_in = d->m_bits_in;
 | |
| 
 | |
| #define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((mz_uint64)(b)) << bits_in); bits_in += (l); }
 | |
| 
 | |
|   flags = 1;
 | |
|   for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1)
 | |
|   {
 | |
|     if (flags == 1)
 | |
|       flags = *pLZ_codes++ | 0x100;
 | |
| 
 | |
|     if (flags & 1)
 | |
|     {
 | |
|       mz_uint s0, s1, n0, n1, sym, num_extra_bits;
 | |
|       mz_uint match_len = pLZ_codes[0], match_dist = *(const mz_uint16 *)(pLZ_codes + 1); pLZ_codes += 3;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);
 | |
| 
 | |
|       // This sequence coaxes MSVC into using cmov's vs. jmp's.
 | |
|       s0 = s_tdefl_small_dist_sym[match_dist & 511];
 | |
|       n0 = s_tdefl_small_dist_extra[match_dist & 511];
 | |
|       s1 = s_tdefl_large_dist_sym[match_dist >> 8];
 | |
|       n1 = s_tdefl_large_dist_extra[match_dist >> 8];
 | |
|       sym = (match_dist < 512) ? s0 : s1;
 | |
|       num_extra_bits = (match_dist < 512) ? n0 : n1;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       mz_uint lit = *pLZ_codes++;
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
 | |
| 
 | |
|       if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))
 | |
|       {
 | |
|         flags >>= 1;
 | |
|         lit = *pLZ_codes++;
 | |
|         MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|         TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
 | |
| 
 | |
|         if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))
 | |
|         {
 | |
|           flags >>= 1;
 | |
|           lit = *pLZ_codes++;
 | |
|           MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|           TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (pOutput_buf >= d->m_pOutput_buf_end)
 | |
|       return MZ_FALSE;
 | |
| 
 | |
|     *(mz_uint64*)pOutput_buf = bit_buffer;
 | |
|     pOutput_buf += (bits_in >> 3);
 | |
|     bit_buffer >>= (bits_in & ~7);
 | |
|     bits_in &= 7;
 | |
|   }
 | |
| 
 | |
| #undef TDEFL_PUT_BITS_FAST
 | |
| 
 | |
|   d->m_pOutput_buf = pOutput_buf;
 | |
|   d->m_bits_in = 0;
 | |
|   d->m_bit_buffer = 0;
 | |
| 
 | |
|   while (bits_in)
 | |
|   {
 | |
|     mz_uint32 n = MZ_MIN(bits_in, 16);
 | |
|     TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
 | |
|     bit_buffer >>= n;
 | |
|     bits_in -= n;
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
 | |
| 
 | |
|   return (d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| }
 | |
| #else
 | |
| static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)
 | |
| {
 | |
|   mz_uint flags;
 | |
|   mz_uint8 *pLZ_codes;
 | |
| 
 | |
|   flags = 1;
 | |
|   for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1)
 | |
|   {
 | |
|     if (flags == 1)
 | |
|       flags = *pLZ_codes++ | 0x100;
 | |
|     if (flags & 1)
 | |
|     {
 | |
|       mz_uint sym, num_extra_bits;
 | |
|       mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);
 | |
| 
 | |
|       if (match_dist < 512)
 | |
|       {
 | |
|         sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist];
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
 | |
|       }
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       mz_uint lit = *pLZ_codes++;
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
 | |
| 
 | |
|   return (d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| }
 | |
| #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS
 | |
| 
 | |
| static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block)
 | |
| {
 | |
|   if (static_block)
 | |
|     tdefl_start_static_block(d);
 | |
|   else
 | |
|     tdefl_start_dynamic_block(d);
 | |
|   return tdefl_compress_lz_codes(d);
 | |
| }
 | |
| 
 | |
| static int tdefl_flush_block(tdefl_compressor *d, int flush)
 | |
| {
 | |
|   mz_uint saved_bit_buf, saved_bits_in;
 | |
|   mz_uint8 *pSaved_output_buf;
 | |
|   mz_bool comp_block_succeeded = MZ_FALSE;
 | |
|   int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
 | |
|   mz_uint8 *pOutput_buf_start = ((d->m_pPut_buf_func == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf;
 | |
| 
 | |
|   d->m_pOutput_buf = pOutput_buf_start;
 | |
|   d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
 | |
| 
 | |
|   MZ_ASSERT(!d->m_output_flush_remaining);
 | |
|   d->m_output_flush_ofs = 0;
 | |
|   d->m_output_flush_remaining = 0;
 | |
| 
 | |
|   *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
 | |
|   d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);
 | |
| 
 | |
|   if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index))
 | |
|   {
 | |
|     TDEFL_PUT_BITS(0x78, 8); TDEFL_PUT_BITS(0x01, 8);
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);
 | |
| 
 | |
|   pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in;
 | |
| 
 | |
|   if (!use_raw_block)
 | |
|     comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48));
 | |
| 
 | |
|   // If the block gets expanded, forget the current contents of the output buffer and send a raw block instead.
 | |
|   if ( ((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) &&
 | |
|        ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size) )
 | |
|   {
 | |
|     mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
 | |
|     TDEFL_PUT_BITS(0, 2);
 | |
|     if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }
 | |
|     for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF)
 | |
|     {
 | |
|       TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
 | |
|     }
 | |
|     for (i = 0; i < d->m_total_lz_bytes; ++i)
 | |
|     {
 | |
|       TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8);
 | |
|     }
 | |
|   }
 | |
|   // Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes.
 | |
|   else if (!comp_block_succeeded)
 | |
|   {
 | |
|     d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
 | |
|     tdefl_compress_block(d, MZ_TRUE);
 | |
|   }
 | |
| 
 | |
|   if (flush)
 | |
|   {
 | |
|     if (flush == TDEFL_FINISH)
 | |
|     {
 | |
|       if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }
 | |
|       if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| 
 | |
|   memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
 | |
|   memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
 | |
| 
 | |
|   d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++;
 | |
| 
 | |
|   if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0)
 | |
|   {
 | |
|     if (d->m_pPut_buf_func)
 | |
|     {
 | |
|       *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
 | |
|       if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
 | |
|         return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
 | |
|     }
 | |
|     else if (pOutput_buf_start == d->m_output_buf)
 | |
|     {
 | |
|       int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
 | |
|       memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy);
 | |
|       d->m_out_buf_ofs += bytes_to_copy;
 | |
|       if ((n -= bytes_to_copy) != 0)
 | |
|       {
 | |
|         d->m_output_flush_ofs = bytes_to_copy;
 | |
|         d->m_output_flush_remaining = n;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       d->m_out_buf_ofs += n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return d->m_output_flush_remaining;
 | |
| }
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
 | |
| #define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16*)(p)
 | |
| static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)
 | |
| {
 | |
|   mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
 | |
|   mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
 | |
|   const mz_uint16 *s = (const mz_uint16*)(d->m_dict + pos), *p, *q;
 | |
|   mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD(s);
 | |
|   MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;
 | |
|   for ( ; ; )
 | |
|   {
 | |
|     for ( ; ; )
 | |
|     {
 | |
|       if (--num_probes_left == 0) return;
 | |
|       #define TDEFL_PROBE \
 | |
|         next_probe_pos = d->m_next[probe_pos]; \
 | |
|         if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
 | |
|         probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
 | |
|         if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break;
 | |
|       TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
 | |
|     }
 | |
|     if (!dist) break; q = (const mz_uint16*)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; p = s; probe_len = 32;
 | |
|     do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|                    (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );
 | |
|     if (!probe_len)
 | |
|     {
 | |
|       *pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); break;
 | |
|     }
 | |
|     else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const mz_uint8*)p == *(const mz_uint8*)q)) > match_len)
 | |
|     {
 | |
|       *pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break;
 | |
|       c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #else
 | |
| static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)
 | |
| {
 | |
|   mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
 | |
|   mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
 | |
|   const mz_uint8 *s = d->m_dict + pos, *p, *q;
 | |
|   mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
 | |
|   MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;
 | |
|   for ( ; ; )
 | |
|   {
 | |
|     for ( ; ; )
 | |
|     {
 | |
|       if (--num_probes_left == 0) return;
 | |
|       #define TDEFL_PROBE \
 | |
|         next_probe_pos = d->m_next[probe_pos]; \
 | |
|         if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
 | |
|         probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
 | |
|         if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break;
 | |
|       TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
 | |
|     }
 | |
|     if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break;
 | |
|     if (probe_len > match_len)
 | |
|     {
 | |
|       *pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return;
 | |
|       c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
| static mz_bool tdefl_compress_fast(tdefl_compressor *d)
 | |
| {
 | |
|   // Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio.
 | |
|   mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left;
 | |
|   mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
 | |
|   mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
 | |
| 
 | |
|   while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size)))
 | |
|   {
 | |
|     const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
 | |
|     mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|     mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
 | |
|     d->m_src_buf_left -= num_bytes_to_process;
 | |
|     lookahead_size += num_bytes_to_process;
 | |
| 
 | |
|     while (num_bytes_to_process)
 | |
|     {
 | |
|       mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
 | |
|       memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
 | |
|       if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
 | |
|         memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
 | |
|       d->m_pSrc += n;
 | |
|       dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       num_bytes_to_process -= n;
 | |
|     }
 | |
| 
 | |
|     dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
 | |
|     if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break;
 | |
| 
 | |
|     while (lookahead_size >= 4)
 | |
|     {
 | |
|       mz_uint cur_match_dist, cur_match_len = 1;
 | |
|       mz_uint8 *pCur_dict = d->m_dict + cur_pos;
 | |
|       mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
 | |
|       mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK;
 | |
|       mz_uint probe_pos = d->m_hash[hash];
 | |
|       d->m_hash[hash] = (mz_uint16)lookahead_pos;
 | |
| 
 | |
|       if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= dict_size) && ((*(const mz_uint32 *)(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram))
 | |
|       {
 | |
|         const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
 | |
|         const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);
 | |
|         mz_uint32 probe_len = 32;
 | |
|         do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|           (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );
 | |
|         cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
 | |
|         if (!probe_len)
 | |
|           cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
 | |
| 
 | |
|         if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)))
 | |
|         {
 | |
|           cur_match_len = 1;
 | |
|           *pLZ_code_buf++ = (mz_uint8)first_trigram;
 | |
|           *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|           d->m_huff_count[0][(mz_uint8)first_trigram]++;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           mz_uint32 s0, s1;
 | |
|           cur_match_len = MZ_MIN(cur_match_len, lookahead_size);
 | |
| 
 | |
|           MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE));
 | |
| 
 | |
|           cur_match_dist--;
 | |
| 
 | |
|           pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
 | |
|           *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
 | |
|           pLZ_code_buf += 3;
 | |
|           *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);
 | |
| 
 | |
|           s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
 | |
|           s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
 | |
|           d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;
 | |
| 
 | |
|           d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         *pLZ_code_buf++ = (mz_uint8)first_trigram;
 | |
|         *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|         d->m_huff_count[0][(mz_uint8)first_trigram]++;
 | |
|       }
 | |
| 
 | |
|       if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }
 | |
| 
 | |
|       total_lz_bytes += cur_match_len;
 | |
|       lookahead_pos += cur_match_len;
 | |
|       dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
 | |
|       cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       MZ_ASSERT(lookahead_size >= cur_match_len);
 | |
|       lookahead_size -= cur_match_len;
 | |
| 
 | |
|       if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])
 | |
|       {
 | |
|         int n;
 | |
|         d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
 | |
|         d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
 | |
|         if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|           return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|         total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (lookahead_size)
 | |
|     {
 | |
|       mz_uint8 lit = d->m_dict[cur_pos];
 | |
| 
 | |
|       total_lz_bytes++;
 | |
|       *pLZ_code_buf++ = lit;
 | |
|       *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|       if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }
 | |
| 
 | |
|       d->m_huff_count[0][lit]++;
 | |
| 
 | |
|       lookahead_pos++;
 | |
|       dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
 | |
|       cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       lookahead_size--;
 | |
| 
 | |
|       if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])
 | |
|       {
 | |
|         int n;
 | |
|         d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
 | |
|         d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
 | |
|         if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|           return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|         total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
 | |
|   d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
| 
 | |
| static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, mz_uint8 lit)
 | |
| {
 | |
|   d->m_total_lz_bytes++;
 | |
|   *d->m_pLZ_code_buf++ = lit;
 | |
|   *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }
 | |
|   d->m_huff_count[0][lit]++;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist)
 | |
| {
 | |
|   mz_uint32 s0, s1;
 | |
| 
 | |
|   MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE));
 | |
| 
 | |
|   d->m_total_lz_bytes += match_len;
 | |
| 
 | |
|   d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);
 | |
| 
 | |
|   match_dist -= 1;
 | |
|   d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
 | |
|   d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); d->m_pLZ_code_buf += 3;
 | |
| 
 | |
|   *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }
 | |
| 
 | |
|   s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
 | |
|   d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;
 | |
| 
 | |
|   if (match_len >= TDEFL_MIN_MATCH_LEN) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
 | |
| }
 | |
| 
 | |
| static mz_bool tdefl_compress_normal(tdefl_compressor *d)
 | |
| {
 | |
|   const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left;
 | |
|   tdefl_flush flush = d->m_flush;
 | |
| 
 | |
|   while ((src_buf_left) || ((flush) && (d->m_lookahead_size)))
 | |
|   {
 | |
|     mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
 | |
|     // Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN.
 | |
|     if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1))
 | |
|     {
 | |
|       mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
 | |
|       mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
 | |
|       mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
 | |
|       const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
 | |
|       src_buf_left -= num_bytes_to_process;
 | |
|       d->m_lookahead_size += num_bytes_to_process;
 | |
|       while (pSrc != pSrc_end)
 | |
|       {
 | |
|         mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
 | |
|         hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
 | |
|         d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);
 | |
|         dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))
 | |
|       {
 | |
|         mz_uint8 c = *pSrc++;
 | |
|         mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|         src_buf_left--;
 | |
|         d->m_dict[dst_pos] = c;
 | |
|         if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
 | |
|           d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
 | |
|         if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN)
 | |
|         {
 | |
|           mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
 | |
|           mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
 | |
|           d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
 | |
|     if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))
 | |
|       break;
 | |
| 
 | |
|     // Simple lazy/greedy parsing state machine.
 | |
|     len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|     if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS))
 | |
|     {
 | |
|       if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))
 | |
|       {
 | |
|         mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
 | |
|         cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; }
 | |
|         if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len);
 | |
|     }
 | |
|     if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5)))
 | |
|     {
 | |
|       cur_match_dist = cur_match_len = 0;
 | |
|     }
 | |
|     if (d->m_saved_match_len)
 | |
|     {
 | |
|       if (cur_match_len > d->m_saved_match_len)
 | |
|       {
 | |
|         tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
 | |
|         if (cur_match_len >= 128)
 | |
|         {
 | |
|           tdefl_record_match(d, cur_match_len, cur_match_dist);
 | |
|           d->m_saved_match_len = 0; len_to_move = cur_match_len;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
 | |
|         len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0;
 | |
|       }
 | |
|     }
 | |
|     else if (!cur_match_dist)
 | |
|       tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
 | |
|     else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128))
 | |
|     {
 | |
|       tdefl_record_match(d, cur_match_len, cur_match_dist);
 | |
|       len_to_move = cur_match_len;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
 | |
|     }
 | |
|     // Move the lookahead forward by len_to_move bytes.
 | |
|     d->m_lookahead_pos += len_to_move;
 | |
|     MZ_ASSERT(d->m_lookahead_size >= len_to_move);
 | |
|     d->m_lookahead_size -= len_to_move;
 | |
|     d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE);
 | |
|     // Check if it's time to flush the current LZ codes to the internal output buffer.
 | |
|     if ( (d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
 | |
|          ( (d->m_total_lz_bytes > 31*1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) )
 | |
|     {
 | |
|       int n;
 | |
|       d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
 | |
|       if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|         return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d)
 | |
| {
 | |
|   if (d->m_pIn_buf_size)
 | |
|   {
 | |
|     *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
 | |
|   }
 | |
| 
 | |
|   if (d->m_pOut_buf_size)
 | |
|   {
 | |
|     size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining);
 | |
|     memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n);
 | |
|     d->m_output_flush_ofs += (mz_uint)n;
 | |
|     d->m_output_flush_remaining -= (mz_uint)n;
 | |
|     d->m_out_buf_ofs += n;
 | |
| 
 | |
|     *d->m_pOut_buf_size = d->m_out_buf_ofs;
 | |
|   }
 | |
| 
 | |
|   return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY;
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush)
 | |
| {
 | |
|   if (!d)
 | |
|   {
 | |
|     if (pIn_buf_size) *pIn_buf_size = 0;
 | |
|     if (pOut_buf_size) *pOut_buf_size = 0;
 | |
|     return TDEFL_STATUS_BAD_PARAM;
 | |
|   }
 | |
| 
 | |
|   d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size;
 | |
|   d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size;
 | |
|   d->m_pSrc = (const mz_uint8 *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
 | |
|   d->m_out_buf_ofs = 0;
 | |
|   d->m_flush = flush;
 | |
| 
 | |
|   if ( ((d->m_pPut_buf_func != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
 | |
|         (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf) )
 | |
|   {
 | |
|     if (pIn_buf_size) *pIn_buf_size = 0;
 | |
|     if (pOut_buf_size) *pOut_buf_size = 0;
 | |
|     return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
 | |
|   }
 | |
|   d->m_wants_to_finish |= (flush == TDEFL_FINISH);
 | |
| 
 | |
|   if ((d->m_output_flush_remaining) || (d->m_finished))
 | |
|     return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
|   if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
 | |
|       ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
 | |
|       ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0))
 | |
|   {
 | |
|     if (!tdefl_compress_fast(d))
 | |
|       return d->m_prev_return_status;
 | |
|   }
 | |
|   else
 | |
| #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
|   {
 | |
|     if (!tdefl_compress_normal(d))
 | |
|       return d->m_prev_return_status;
 | |
|   }
 | |
| 
 | |
|   if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf))
 | |
|     d->m_adler32 = (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf);
 | |
| 
 | |
|   if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining))
 | |
|   {
 | |
|     if (tdefl_flush_block(d, flush) < 0)
 | |
|       return d->m_prev_return_status;
 | |
|     d->m_finished = (flush == TDEFL_FINISH);
 | |
|     if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_OBJ(d->m_hash); MZ_CLEAR_OBJ(d->m_next); d->m_dict_size = 0; }
 | |
|   }
 | |
| 
 | |
|   return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush)
 | |
| {
 | |
|   MZ_ASSERT(d->m_pPut_buf_func); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
 | |
| {
 | |
|   d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user;
 | |
|   d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
 | |
|   d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
 | |
|   if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);
 | |
|   d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
 | |
|   d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
 | |
|   d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8;
 | |
|   d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY;
 | |
|   d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1;
 | |
|   d->m_pIn_buf = NULL; d->m_pOut_buf = NULL;
 | |
|   d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL;
 | |
|   d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0;
 | |
|   memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
 | |
|   memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
 | |
|   return TDEFL_STATUS_OKAY;
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d)
 | |
| {
 | |
|   return d->m_prev_return_status;
 | |
| }
 | |
| 
 | |
| mz_uint32 tdefl_get_adler32(tdefl_compressor *d)
 | |
| {
 | |
|   return d->m_adler32;
 | |
| }
 | |
| 
 | |
| mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
 | |
| {
 | |
|   tdefl_compressor *pComp; mz_bool succeeded; if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;
 | |
|   pComp = (tdefl_compressor*)MZ_MALLOC(sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE;
 | |
|   succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == TDEFL_STATUS_OKAY);
 | |
|   succeeded = succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == TDEFL_STATUS_DONE);
 | |
|   MZ_FREE(pComp); return succeeded;
 | |
| }
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|   size_t m_size, m_capacity;
 | |
|   mz_uint8 *m_pBuf;
 | |
|   mz_bool m_expandable;
 | |
| } tdefl_output_buffer;
 | |
| 
 | |
| static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, void *pUser)
 | |
| {
 | |
|   tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
 | |
|   size_t new_size = p->m_size + len;
 | |
|   if (new_size > p->m_capacity)
 | |
|   {
 | |
|     size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if (!p->m_expandable) return MZ_FALSE;
 | |
|     do { new_capacity = MZ_MAX(128U, new_capacity << 1U); } while (new_size > new_capacity);
 | |
|     pNew_buf = (mz_uint8*)MZ_REALLOC(p->m_pBuf, new_capacity); if (!pNew_buf) return MZ_FALSE;
 | |
|     p->m_pBuf = pNew_buf; p->m_capacity = new_capacity;
 | |
|   }
 | |
|   memcpy((mz_uint8*)p->m_pBuf + p->m_size, pBuf, len); p->m_size = new_size;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
 | |
| {
 | |
|   tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);
 | |
|   if (!pOut_len) return MZ_FALSE; else *pOut_len = 0;
 | |
|   out_buf.m_expandable = MZ_TRUE;
 | |
|   if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return NULL;
 | |
|   *pOut_len = out_buf.m_size; return out_buf.m_pBuf;
 | |
| }
 | |
| 
 | |
| size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
 | |
| {
 | |
|   tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);
 | |
|   if (!pOut_buf) return 0;
 | |
|   out_buf.m_pBuf = (mz_uint8*)pOut_buf; out_buf.m_capacity = out_buf_len;
 | |
|   if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return 0;
 | |
|   return out_buf.m_size;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_ZLIB_APIS
 | |
| static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };
 | |
| 
 | |
| // level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files).
 | |
| mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy)
 | |
| {
 | |
|   mz_uint comp_flags = s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
 | |
|   if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
 | |
| 
 | |
|   if (!level) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
 | |
|   else if (strategy == MZ_FILTERED) comp_flags |= TDEFL_FILTER_MATCHES;
 | |
|   else if (strategy == MZ_HUFFMAN_ONLY) comp_flags &= ~TDEFL_MAX_PROBES_MASK;
 | |
|   else if (strategy == MZ_FIXED) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
 | |
|   else if (strategy == MZ_RLE) comp_flags |= TDEFL_RLE_MATCHES;
 | |
| 
 | |
|   return comp_flags;
 | |
| }
 | |
| #endif //MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning (push)
 | |
| #pragma warning (disable:4204) // nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal)
 | |
| #endif
 | |
| 
 | |
| // Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at
 | |
| // http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
 | |
| // This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck.
 | |
| void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip)
 | |
| {
 | |
|   // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined.
 | |
|   static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };
 | |
|   tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0;
 | |
|   if (!pComp) return NULL;
 | |
|   MZ_CLEAR_OBJ(out_buf); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57+MZ_MAX(64, (1+bpl)*h); if (NULL == (out_buf.m_pBuf = (mz_uint8*)MZ_MALLOC(out_buf.m_capacity))) { MZ_FREE(pComp); return NULL; }
 | |
|   // write dummy header
 | |
|   for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);
 | |
|   // compress image data
 | |
|   tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER);
 | |
|   for (y = 0; y < h; ++y) { tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); tdefl_compress_buffer(pComp, (mz_uint8*)pImage + (flip ? (h - 1 - y) : y) * bpl, bpl, TDEFL_NO_FLUSH); }
 | |
|   if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != TDEFL_STATUS_DONE) { MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }
 | |
|   // write real header
 | |
|   *pLen_out = out_buf.m_size-41;
 | |
|   {
 | |
|     static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
 | |
|     mz_uint8 pnghdr[41]={0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a,0x00,0x00,0x00,0x0d,0x49,0x48,0x44,0x52,
 | |
|       0,0,(mz_uint8)(w>>8),(mz_uint8)w,0,0,(mz_uint8)(h>>8),(mz_uint8)h,8,chans[num_chans],0,0,0,0,0,0,0,
 | |
|       (mz_uint8)(*pLen_out>>24),(mz_uint8)(*pLen_out>>16),(mz_uint8)(*pLen_out>>8),(mz_uint8)*pLen_out,0x49,0x44,0x41,0x54};
 | |
|     c=(mz_uint32)mz_crc32(MZ_CRC32_INIT,pnghdr+12,17); for (i=0; i<4; ++i, c<<=8) ((mz_uint8*)(pnghdr+29))[i]=(mz_uint8)(c>>24);
 | |
|     memcpy(out_buf.m_pBuf, pnghdr, 41);
 | |
|   }
 | |
|   // write footer (IDAT CRC-32, followed by IEND chunk)
 | |
|   if (!tdefl_output_buffer_putter("\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { *pLen_out = 0; MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }
 | |
|   c = (mz_uint32)mz_crc32(MZ_CRC32_INIT,out_buf.m_pBuf+41-4, *pLen_out+4); for (i=0; i<4; ++i, c<<=8) (out_buf.m_pBuf+out_buf.m_size-16)[i] = (mz_uint8)(c >> 24);
 | |
|   // compute final size of file, grab compressed data buffer and return
 | |
|   *pLen_out += 57; MZ_FREE(pComp); return out_buf.m_pBuf;
 | |
| }
 | |
| void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out)
 | |
| {
 | |
|   // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out)
 | |
|   return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE);
 | |
| }
 | |
| 
 | |
| // Allocate the tdefl_compressor and tinfl_decompressor structures in C so that
 | |
| // non-C language bindings to tdefL_ and tinfl_ API don't need to worry about
 | |
| // structure size and allocation mechanism.
 | |
| tdefl_compressor *tdefl_compressor_alloc()
 | |
| {
 | |
|   return (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
 | |
| }
 | |
| 
 | |
| void tdefl_compressor_free(tdefl_compressor* pComp)
 | |
| {
 | |
|   MZ_FREE(pComp);
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning (pop)
 | |
| #endif
 |